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Preface

It is probably true quite generally that in the history of human thinking
the most fruitful developments frequently take place at those points
where two different lines of thought meet. Hence, if they actually meet,
that is, if theyi are at least so much related to each other that a real
interaction can take place, then one may hope that newt and interesting
developments may follow.

Werner Heisenberg

This volume contains papers presented at the July 1991 NATO Advanced
Study Institute Probabilistic and Stochastic Methods in Analysis with Appli-
cations. The conference was held at the beautiful II Ciocco resort near Lucca,
in the glorious Tuscany region of northern Italy. The dynamic interaction
between world-renowned scientists from the usually disparate communities
of pure mathematicians and applied scientists, which occurred at our 1989
ASI, Fourier Analysis and its Applications, continued at this meeting.

Probability has been an important part of mathematics for more than
three centuries. Moreover, its importance has grown in recent decades with
continuing increases in computational power. Faster and more powerful dig-
ital computers, now readily available to almost all scientists, have enabled
them to use probabilistic and stochastic techniques to attack real-world prob-
lems not considered feasible only a few years ago. This approach has been
used in -uch engineering areas as: speech and image processing, including
the recent approaches employing wavelets, geophysical exploration, radar,
sonar, etc.-and was a major focus of our ASI.

Among the papers to be found herein on these subjects are three ex-
ceptionally clear expositions on wavelets, frames, and their applications by
John Benedetto, St~phane Jaffard, and St~phane Mallat; an illuminating de-
scription of holography and other image processing techniques by Walter
Schempp; and interesting workson sampling theory and methods by Charly
Gr6chenig, Bill Heller, Christian HoudrT, Keh-Shin Lii, and Tapan Sarkar.

Part of the conference was devoted to the connections between proba-
bility and partial differential equations, an area of extremely active current
research. The reader will see how these fields have united, yielding new
insight into known analytic facts, such as probabilistic representations of
solutions to elliptic and parabolic PDE's. Furthermore, this unification is
providing both new and simplified approaches to classical problems in prob-
ability, such as the PDE method for large deviation problems. Highlights
of this section of the proceedings are in-depth introductions to stochastic
optimal control and filtering theory-both new research fields of particular

vii



I Prefiact Vill J.

interest for applications, presented by two recognized experts, Piermarco
Cannarsa and Gopinath Kallianpur.

Another part of the conference dealt with the application of probabilis-
tic techniques to mathematical analysis. The lovely paper by Jean-Pierre
Kahane, a true pioneer in this field, is a standout among the many wonder-
ful works in this volume. Babar Saffari, describing the use o' probability
methods in Fourier analysis, presents a very complex subject with extc-p-
tional clarity.

Finally, there are several papers which are difficult to categorize but
a joy to read. Two such are Gavin Brown's clear explanation of normal
numbers and dynamical systems, and Don Newman's thOught-prox oki!,<.
foray into those aspects of probability which have ,a prolound influence upon
our daily lives.

The cooperation of many individuals and organizations was required
in order to make the conference the success that it , as. The financial sponsor.-
aie listed on the 'Acknowledgements' page. In addition, I wish to expr.>s,ý

my sincere appreciation to my assistants, Marcia and Jennifer Byrnes and
Nicole Conte, for their invaluable aid. I am also graieful to Kathrvry liar
greaves and Karl Berry, our TEXnicians, for their ,uptrla!ive work (.1,

printed and emailed aspects of the conference, trom the initial application

to this volume Their extraordinary effort in TI.•i,. thv.sc proceeding:.,,
suiting in one of the few NATO proceedings w'ver al papl'rp- arc did m.,A
typeset, deserves special acclamation Yinallv, mni l'earttclt thank- to the l
Ciocco staff, especially Bruno G;innasi and Albcrt' '-uwiredini, for ottfrin,,.
an ideal setting, not to mention the nognitwie, :-ix'ea.,, that promnctet V il(
productive interaction between the parti.ipantz ot ,iit bllCrnlCe.. \il o.i: '.
above, the other speakers, and the remaining conterees. made it poss.iie iw:
our Advanced Studyv Institute, and this volume, to tultili tile statf, i V \
objectives of disseminatinll ad ,,'ed kn",wh''d,. ', '. 1',ii, inte ,
scientific contacts.,.

D~ecem ber 2;, 199-)1 : ;.. .. - ,: •,, ;,i,:,,
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Wavelets and analysis of partial differential equations

St~phane Jaffard
C.E.R.M.A.
Ecole Nationale des Ponts et Chauss~es
La Courtine, 93167 Noisy-le-grand France
sj@antigone.enpc. fr

SWe describe the main properties of decompositions in orthonormal bases
of wavelets. We then apply them to the theoretical ard numerical study of
some partial differential equations.

1. Introduction

In the seventies and the eighties, alternative methods to Fourier analysis
appeared independently in many fields of science and technology. Let us
mention oil detection, analysis of speech, quantum mechanics, image analy-
sis, analysis of turbulent flows, multigrid methods, the theory of interpola-
tion between functional spaces, the propagation of singularities of nonlinear
partial differential equations PDE's, etc.

Wavelets comprise a mathematical tool which lies behind these new
methods. We have two purposes in this paper. We give a survey of the
construction of wavelets and related orthonormal bases, and we also show
how certain specific properties of wavelets make them an important tool
in the theoretical and numerical study of PDE's. We also give at the end a
large bibliography.

2. Localization in the phase space

The mathematical evolution that led to wavelets and related constructions
can be interpreted as the construction of successive bases of functions with
the following aim: the decomposition on these bases yields the sharpest
possible information on the time and frequency behavior of the analysed
signal or function.

Such constructions are important in signal analysis (a recording of
speech or music clearly contains localized parts which have a specific fre-
quency), in quantum mechanics (to study probability waves) or in the study
of partial differential operators.

3
J. S. Byrnes et al. (eds.), Probabilistic and Stochastic Methods in Analysis, with Applications. 3-13.
0 1992 Kluwer Academic Publishers. Printed in the Netherlands.



I laffard 4

The first step was obtained by the Fourier series. The two main draw-
backs of Fourier analysis are that it is not local and that it is difficult to use
when dealing with other spaces than L2 or the Sobolev spaces H'.

The problem of having a stable decomposition for other spaces than L2

led Alfred Haar to the so-called Haar system constructed as follows.
Let 4) be the characteristic function of [0, 1/21, and i4 4 )ý(x)-4)(x- 1112).

The collection of all the ý)4,k (j E Z, k E Z), defined by

i ,i,(x) = 2 i/ 2 (2'x - k)

forms an orthonormal basis of L2 (9i), and the decomposition makes sense
also in the L" spaces. The drawback is that the decomposition on this system
does not give sharp frequency information, since the function ý4 does not
have a good frequency localization. Wavelets provide a way to avoid this.

Before describing the constructions of wavelet and wavelet-type bases,
let us give some general results on "doubly-localized" orthonormal bases.

T. Steger proved [3] that L2 does not admit a basis of the following form

f (X) C ibi i(x - aj)

where the g, would be such that sup i1 g1 11,< oo, for an c > 0, where

g 9j1f= (Ix 2 )' x g(x2 )1-2X) I2 dx+f(I + g(,j1 1 dI&.

The optimal result was obtained byJ. Bourgain who found a basis where this
estimate holds with e = 0 (see [31).

Actually, if we accept to mix in the same function positive and negative
frequencies of the same value, this obstruction no more stands, and there
exists an orthonormal basis of L2 (9q) of the following form (see [9])

(x)= 4)(x - n)

(x)= !2_hP(x - •)cos(27T x) if 1 #0,[ + n t 2Z

= /•24x - - )sinf27rix) if 1 / 0, 1 + n t 2Z + 1,

where q) and 4) have exponential decay.
The fact that we do not try to separate positive and negative frequencies

of the same amplitude means, in the signal analysis terminology, that we
study the real signal, and not the corresponding analytical signal.

Independently, H. Malvar (see [25]) obtained a basis of the following
similar form

Uk.i I w(x - 1) sin [7T(k + ½ )(x - I)],

where w, is compactly supported.

.1



{ 5 Wavelets and analysis of partial differential equations }

R. Coifman and Y Meyer generalized this construction into the com-
pletely adaptative form that follows (see [4])

where al is an increasing sequence of real numbers such that ot E- +00 when

I -' -oo and a, -- --oo when 1 -4 -oo; Lt = a I- a[ and wi is compactly
supported, essentially on the interval [at, 1t, II.

More precisely, let e1 satisfy a1 + cl < at - c1  . Then one chooses
w, such that

0 Cl it, WIx < 1,
v xv(x) = I on [at +CI,aL, -- Eli 11,

S',W(X) = 0 outside [aL - £1,at, 1 ±+ elj 1,
* ifx :: [aL- el,a,+el], .'t(x) = iv'l- (2al -x)and it-2(X)+xv (x) + %.

Notice that in order to compute the coefficients of a function on such
a basis, we need to perform a pointwise multiplication, and then to com-
pute Fourier coefficients. Clearly, the whole decomposition is obtained in
O(N log(N)) operations.

We have here a huge collection of orthonormal bases, roughly speaking,
as many as the possible partitions of 91 by segments of arbitrary length. This
richness will be used for data compression: for a given signal, we want to
determine a basis on which the signal has the "smallest" decomposition. For
that, we need an algorithm which allows us to go easily from one basis to
another. Let us describe the following recipe due to V. Wickerhauser ([5]).

Let A1 be the space spanned by the (Uk,[)krZ (which are the functions
corresponding to a given window). The space A ý A[ u A,, 1 has exactly
the same structure as a space A,,, with a window between a, and 0t, 2, and
a function w, which is

W W

Hence, we can replace two adjacent windows by a larger one without chang-
ing anything else.

The algorithm of representation of a function is the following: for a
given f, we start by its decomposition using small windows all of the same
width, and we merge two such windows, when there is an advantage in
doing so. We iterate this procedure as long as needed, and obtain at the end
a segmentation adapted to the signal. We still have to choose a criterion for
deciding when we merge two windows together. The one chosen is given
by a kind of "entropy minimization".
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Suppose we have a familly of orthonormal bases eýý"(t). For each cx
the signal f is decomposed on the corresponding orthonormal basis by

f(t) - Lce (t)

and we want to minimize the entropy
=-(1 Y c 1 log IC I

At each step, we calculate the entropy for the two windows and for the large
one, and we merge the windows if the corresponding entropy decreases.

3. Construction of wavelets and wavelet packets

3.1. Multiresolution analysis

We shall now describe another collection of bases, which are a generalization
of the classical wavelets, and will also supply a family of orthonormal bases
for which the same entropy minimization algorithms are used. But let us
first recall the construction of wavelets by a multiresolution analysis and the
fast wavelet decomposition, both introduced by S. Mallat (see [241). We shall
stick to the dimension 1 for the sake of simplicity. A multiresolution analysis
is an increasing sequence (Vi)iEz of closed subspaces of 1_2 such that

- f1Vi = {0i
- U Vj is dense in L2

@ f(x) E V1 0 f(2x) E Vi 1

* There is a function g in V, such that the g(x - k)kEz form a Riesz basis
of Vo.

We also require g to be smooth and well localized.
A simple example of multiresolution analysis is obtained by taking for

Vi the space of continuous and piecewise linear functions on the intervals
[k2- ,(k + 1)2-i], j,k E Z. A possible choice for g is the "hat" function,
which is the function of V0 taking the value I for x = 0 and vanishing at the
other integers. It is easy to orthonormalise the set g(x - k) by choosing

= (k 1 ( (L.1± +2kn12)

Then, the 4(x - k) form an orthonormal basis of Vo.
Define W1 as the orthogonal complement of V1 in Vj 1. One imme-

diately checks that the W1 are mutually orthogonal, and their direct sum is
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equal to L2. By a similar procedure which led to the construction of ep, we
can obtain a function iý such that the iP(x - k) form an orthonormal basis of
W0 . Since the Wj are obtained from each other by dilation, and are mutually
orthogonal, the functions 2j /2* (2jx- k) form an orthonormal basis of L2 (9).

Let us now come back to the orthogonal decomposition

Vo = V- 1 ( W- 1. (3.1)

We have two orthonormal bases of V1: the first one is the v"20 (2x - k), k (E Z,
and the second one is the union of the 4 (x - k) and -P(x - k).

The existence of two bases implies the existence of an isometry mapping
the coordinates in the first basis on the coordinates in the second basis. Let
us describe more precisely this isometry. Let hk and gk be

1= f O(x/2)4)(x - k)dx
9k =
gk =~ JtP(x/2)Clx- k)dx.

Let f E V0 and let us write its decomposition on the two bases of Vo given
by (3.1).

f(x) =-cl(x - k)

so that

= yc(.(x - k ( t))
k

k

and, similarly

d' Y ckgk2L
k

Suppose now that a signal is given by a sequence of discrete values c°. We can
consider that it is the coefficients of a function of V0 on the (P (x - k). The isom-
etry transforming the sequence co into (ck, dk) can be written F = (FO, F1 )
where Fo and F1 are commuting with even translations: they are discrete
convolutions where we only keep each other term. In the terminology of
signal analysis, F0 and F1 are said to he quadrature mirror filters. This notion
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has been introduced in 1977 by D. Esteban and C. Galand for improving the
quality of digital transmission of sound. Iterating I J 1 -1 times the filter FL
and then applying once the filter F1, we obtain the coefficients on the •j,k
for j _< 0. Each level requires only a discrete convolution. This algorithm
constitutes the fast wavelet transform (see [24]). Of course the decision to
apply F, n. times and F1 once is rather arbitrary, and we could decide to ran-
domly apply F0 and F1 a certain number of times. This idea leads to wavelet
packets which are a family of orthonormal bases of L2 corresponding to all
the "admissible" ways of applying these filters.

Let us come back to our initial problem of finding bases well localized
in phase space. The adaptative Fourier windows and the wavelet packets do
not give a satisfactory answer to this problem. It is therefore remarkable that,
though they do not have this type of localization, they provide very efficient
data compression algorithms. But the problem of finding an adaptative
algorithm which gives good localization in phase space is still open (by
good, we mean comparable to the localization of any of the commonly
used wavelet bases). Because of this lack of localization, up to now only
the "classical wavelets" have been used to study operators and PDE's, and
therefore, only these bases will appear in the following.

4. Analysis of partial differential equations

4.1. Wavelet method for elliptic problems

Consider an elliptic problem, such as the Poisson problem, on a bounded
domain. Let us first recall some properties of its resolution by Galerkin
methods based on finite elements or of finite differences.

One of the main difficulties in these methods is that, once the prob-
lem has been properly discretized, one has to solve a system which is ill-
conditioned. Typically, for a second order elliptic problem in two dimen-
sions, one obtains a matrix M such that

K = IIMII IM--H 1 = 0(1 /h 2 )

where h is the size of the discretization (see [28]). Such ill-conditioning has
two drawbacks; it leads to numerical instabilities and to slow convergence for
iterative resolution algorithms. In order to avoid this problem, one usual!y
uses a preconditioning, which amounts to finding an easily invertible matrix
D such that D-1MD-' (or D- 1 M, depending on the method used) will
have a better condition number K. For the example we considered, the
usual preconditioning methods on general domains (SSOR or DKR on a
conjugate gradient method, for instance) make K become 0(1/h). We shall
give a wavelet method for which K = 0(1) (see[13J). This result requires
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the construction of wavelets adapted to the domain 0 (see [17]); they are an
orthonormal basis of 1_

2 (r) composed of functions 4'i,k (i > 0) such that

I a*I,k(x) I< C2J`2" /2 exp(-y2 I x - k2- ')

for I o I<_ 2m - 2, and a positive y.
The decay estimates show that *Pi,k and its partial derivatives are es-

sentially centered around k2-i with a width 2-1. In the following, wavelets
will be indexed by A = k2- 1 .

Actually, though these wavelets are not the same as in the case 0 -=V,

they are "almost" the same; that is, numerically, only the wavelets that are
close to the boundary are modified. Thus, we can essentially keep the fast
decomposition algorithms, with only small modifications near the boundary.

Let us now describe the method of resolution for the Poisson equation.
It is performed by a standard Galerkin method, keeping all the wavelets
up to a frequency Jo. If we solve a Laplacian on a domain with Dirichlet
boundary conditions, we have to invert a matrix

(MA,A,) = (\V*A I V*A')).

We now renormalize the wavelets for the Sobolev H 1 norm, that is we
consider that !he functions on which the problem is discretized are the

2X .

The condition number of the corresponding matrix is then bounded inde-
pendently of the size discretization h = 2-10. Thus, a conjugate gradient
method will converge in a bounded number of steps, no matter how precise
we require the solution to be. We shall explain this result in the next part
by comparing it with multigrid algorithms. Let us also mention that, if we
use smooth wavelets, the order of accuracy of the method is extremely good
since it is driven by the local regularity of the problem (as opposed to spectral
methods, for instance).

4.2. Wavelet and multigrid algorithms

A conjugate gradient method converges slowly when the condition number
is large. Actually, the convergence is rather fast on the subspaces corre-
sponding to the largest eigenvalues, but slow for the small eigenvalues. For
an elliptic problem, small eigenvalues are associated to smooth, slowly oscil-
lating functions (i.e., to wavelets indexed by a small j), and large eigenvalues
to high frequency functions (i.e., to wavelets indexed by a large 0).

Roughly speaking, in a multigrid method, one starts by making a
few steps of conjugate gradient, until the high frequency component of
the solution is well approximated; the error is then a comparatively low
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frequency function, which can thus be accurately calculated on a grid with
a double-size mesh. The resolution on the larger grid is performed again by
the same method, and one iterates this procedure. The part of the solution
which has frequencies around 2i is thus calculated on the grid of size 2-i.
This is precisely what is performed on the wavelet method we described.
The splitting on functions defined on meshes of different sizes (which is done
in multigrid algorithms) is also performed by the wavelet decomposition.
The essential difference is the following: it is the decomposition on wavelets
and the recomposition which is iterative (by the fast algorithms described
in section 2.2), but the resolution is just done once by a conjugate gradient.
Actually, when the function is written in its wavelet decomposition

f = TTCk

i k

each block Lk Cj.k1j,k has its frequencies around 2i, so that the purpose
of the renormalisation that we make (multiply the terms of this block by
2-i) is to bring all the eigenvalues ot the matrix M close together so that a
conjugate gradient will converge fast. The multigrid method just works the
other way round: the iterative decomposition according to the frequencies
is performed during the resolution.

4.3. Analysis of singular operators

Let us mention a recent extension of the ideas developed in Section 4.1 to
obtain estimates of the Green function of some singular elliptic operators
(see [12]). Consider the following operator

A(M) = -V(aVu) + u

where the function a is positive, smooth, but may vanish. Suppose further-
more that a has a zero of order larger than 2 where it vanishes. Then the
following estimates on the Green function of A and its derivatives hold

C

Ix n-2 i oJ i;sup( aý(X)a(j),I x - IJ

This is obtained, as in the case of elliptic operators, by showing that A
and A- 1 are "almost diagonal" in a wavelet basis.

5. Nonlinear evolution equations

The numerical study of nonlinear evolution equations is a field where
wavelets should be very useful. The solutions of these equations often
have singularities which then propagate (even when the initial value is
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smooth). The local analysis of the regularity performed by wavelets and
their properties of local approximation (see [16, 15]) can give ground to a
justification of this hope. Several numerical experiments have been done
for the one-dimensional Burgers equation (see for instance [11, 21, 221). A
recent extension to Korteweg de Vries equation has also been implemented
([18]). Consider the following Burgers equation to which is added a small
viscosity term

au a U2 a2 U
at + a•U ax2

The methods used all consist of a finite difference discretization in time and
a wavelet decomposition in space. A possible scheme is the following

U,, I - U a aU a2UJ
At + ax 0x2 '

where U, represents the solution at the time nAt. Here the nonlinear term
is treated explicitely, but the viscosity term appears implicitely. Knowing
U,, by its wavelets coefficients, we want to calculate U,., 1. In order to
compute the wavelet coefficients of the nonlinear term U, v-", we can either
compute the values of U,, and au" on a regular grid (using the Fast Wavelet
Transform) or try to obtain more or less explicit formulas for the wavelet
coefficients of such products (this last issue is now studied). The choice of
an implicit algorithm obliges us to compute (Id - cAt bX)- of a function
given by its wavelet decomposition. This is performed by computing once
for all

(Id - cAt0-,') -(,tk) = 0..

Since this computation is rather costly, it doesn't allow for changing the time
scale At during the calculation. An explicit scheme using different time
scales is being studied by Bacry, Mallat and Papanicolaou at the Courant
Institute. These methods give the solution with a very good accuracy, espe-
cially near the shock where the oscillations are small and very well localized.
Adaptative schemes with a local refinement around the shock are studied.
The tracking of the shock is very easy since it takes place where the large
wavelet coefficients are.

6. Bibliography

[1] E.H. Adelson, E. Simoncelli, and R. Hingorani. Orthogonal pyramid
transforms for image coding. Vision. Comm. and Image Proc., 845,
1987.



I Jaffard 2

[2] F. Argoul, A. Arn~odo, G. Grasseau, Y. Gagne, E.J. Hopfinger, and
U. Frisch. Wavelet analysis of turbulence data reveals the multifrac-
tal nature of the Richardson cascade. Nature, 338(6210), 1989.

[31 J. Bourgain. A remark on the uncertainty principle of Hilbertian basis.
J. Functional Analysis, 79:136-143, 1988.

[4] R. Coifman and Y. Meyer. Remarques sur ['analyse de FourierAc fenktres.
C.R.A.S., 312:259-261, 1991.

[5] R. Coifman, Y. Meyer, and V. Wickerhauser. Wavelet analysis and signal
processing. Preprint, 1991.

[6] 1. Daubechies. Orthonormal bases of compactly supported wavelets.
Comm. Pure App). Math., 41, 1988.

[7] 1. Daubechies. The wavelet transform, time-frequency localization and
signal analysis. IEEE Trans. Information Theor'-,, 1989.

[8] 1. Daubechies. A. Grossmann, and Y. Meyer. Painless nonorthogonal
expansions. J. Math and Phlysics, 27:1271-1283, 1986.

[9] 1. Daubechies, S. Jaffard, and J.L. Journ6. A simple Wilson orthonormal
basis with exponential decay. ';]AM%]. Math. Anal., 22(2):554-572, 1991.

[101 M. Farge and D. Rabreau. Transformn' en ondelettes pour d&tecter
et analyser les structures coh6rentes dlans les 6coulements turbulents
bidimensionnels. C.R.A.S., 30'/:1479-1486, 1988.

[111 R. Clowinski, W. L awton, and M. Ravacho. Wavelet s'olution of linear
and nonlinear elliptic, parabolic and hyperbolic problems in one space
dimension. Preprin t, June 1989.

[12] S. Jaffard. Analyse par ondelettes d'Un probl~me elliptique singulier.
Journal de Mlatli~natiques Pures et Apphiqut~es. To appear.

[13] S. Jaffard. Wavelet methods for fast resolution of elliptic problem. SIAM\'
Journal of Nunmerical AnalYsis. To appear.

[14] S. Jaffard. Exposants de Holder en des points donnes et coefficients
d'ondelettes. C.R.A.S., 308:79-81, January 1989.

[15] S. Jaffard. Local order of approximation by wavelet. Preprint, 1991.

[161 S. jaffard. Pointwise smoothness, two-microlocalization and wavelet
coefficient. Publicacions Maternatiques, 35:155-168, 1991.

[17] S. jaffard and Y. Meyer. Bases d'ondelettes dans des ouverts de R".
Journal de Matht~matiques Pures el Appliqu~es, 68:95-1(18, 19q89.



{ 13 Wa'elets and analysis ofpartial dfferential equalions }

[18] Ph. Laurencot. Private communication, 1991.

[19] P.G. Lemari6. Ondelettes A localisation exponentielle. Journal die
Mathrnatiques Pures et Appliquýes, 67:227-236, 1988.

[201 P.G. leemari6 and Y. Meyer. Onde!.ttes et bases hilbertiennes. Revista
Math. Iberoamericana, 1, 1986.

121] Liandrat, V. Perrier, and 1P. Tchamitchian. Numerical resolution of the
regularized Burgers equation using the wavelet transform. P'reprint.
199(l

[221 V. Maday, V. Perrier, and J C. Ravel. Adaptativitý dynamique slur bases
d'ondelettes pour I'approximation d'cquations aux dLri\ees partiel e,
C.R.A..S., l9 1.

[2"1 S. Mallat. Multiresolution approximations and wavelet orti:Jno~ m.1
bases of L,(R). Trans. Amer. Math. Soc., 1989.

[:4] S MAllat. A theory for multiresolution signal decompositio-, The
wavelet representation IEEE Trans. on Pattern A.nal. nII .\Alwhine

Intel., 11(7) December 1989.

[2"1 H :\laavar. l.apped transforms for efficient transform /,sibband coding.
" I;,! Frins. Acoustics, Speech, Signal Processingý, 3T I).

[2o ". 4v-ver Ondelettes et operateurs. I lermann, 1910.

2 Y M,.vo': A;:.xvcht, and applications. 1o appear, 111)).

281 k-. '-trang and G, j. Fix. An analYsis of the linite element inelhod
I I L ~cI k o l

" "Ar,... modified Franklin system and highe'-r .. ,* , -':1
"-4 . W:, P' a,, unconditional bases for Hardy spate- e,•,. 2

,: M,:I .eries, pagues 475-493. Conference in h-onor of Anr:t,

(;,neralized Wannier functions. Preprint, 111-7.
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A wavelet basis is an orthonormal basis for L- ýR the space ot sq~uare-
integrable functions on the real line, of the form ýg,, ,where (I t

2 2" t k and g is a single fixed function, the wa velet. Fach mnultirs,,
lution analy-sis for L III determines such a basis. Jo find a nitiitirct'st hion)T

31,1'iS necn begin with a dilation equaition t t I t k It
the solution t (the scaling function) satisfies certain requirenwo101tN. thenl J
multiresolution analvsis and hence a wavelet basis vvill fol low% This pa
per surveys,. methods of achieving this goal Two separate problemsý aro
involved: first, solving a general dilation equation to tind a hiling lm -
tion. and second, determining when such a scaling funi ion will g'enerte,
a multiresolution analxsis. We present two methods lot 'olving diluitwtn
eqatj~tuins. one blased on the uise ot thc Fourier transformn and one operating,'
in the time d omatin u t ilizin g linear a I gb ra. Ihe sec ond met hiod chaniract r-
izvs all ctinu.Integrable sc.aling tumction, We also pre-,vwu inwt-hods
of determining when a multiresoILuton analysis, %ill follow% from the skaungI
tunction. We discuiss simple conditions oi, the Coefficients L w Nhich ate
"almost" sufficient to ensure the existence cit a wavelet basis, in particlar1,1,
they do ensure that g,, ., _ is a light frame, and we present mnoretw
plicated necessary 'and suifficient conditions for the generation o f a nuult iris-
oltition anal ' sis Thie resualts presented are due mainly to Cohen. ( olella.,
Dauibechies, Heil, Luigarias. Lawton, Ma Ilat-and Mever, although several ot
the results, have been independently investigated b k otheir grouips. incluid-
ing Berger, ('avaretta, lDahmen, lDeslauriers. [uibuk. D\v 11uriola, (;rV9ur\'
Levin, Micchelli, Prautitzch, and Wang

1. Introduction

The -flaar s 'ystem is the classical example of an *tfhne, or watvelet, orthltvtor-
ma) basis for the space [2" (!a) of square-integrable functions oin the real line.

tWe thank David Cofltla nf The MITRF C'orporation, Mclxean. Virginia, for his
collaboratinn on -)me of the results reported in this paper, and for his review of this
document.
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J. S. Byrnes tefal. (eds.), Probabilistic and Stochastic Methods in Analvuis,wuilu Appliications, 45
0 t1992 Kluwer Ac'ademic Publishers. Printed in the Netherlands.
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It consists ot a set of translations and dilations of a single function, thi .1 i• r

wavelet q) (t) = Xlo.j1 2 ,2,, where X1, is the characteristic tur,,tio-

of the set E. Precisely, the Haar system has the form tV,,•:,

li,,kit) -- 2" "l,(2"t k). Such a simply-generated orthonuribnaa, bw.
very appealing; however, the fact that the l-aar wavelet is disconti1U0Lus

severely limits the usefulness of the Haar system in applications. Rece!-1v,
examples of other, smooth wavelets which generate af fine orthonormai ',
have been given, the first by Meyer [281. Meyer's example is an in)i,
differentiable function which has a compactly supported Fourier tran.-Ioriin
Additional examples have been given by Lemario [26] and Battle [II Ik-tii,,,

differentiable with exponential decay), Daubechies [12] (U-timed. tdl:tr'r l
tiable with compact support), and others. Such smooth wavelets are :-,.ter

suited to applications than the I laar wavelet; for example, they have "I, ;

used in speech compression [8, 71.
Soon after Mever's initial example, Mallat and Meyer pr wed ( ai ,0 -C!

multiresolution analvsis for L 2 (I) determines a wavelet basis 127'
of the wavelet bases mentioned above are determined by an appt.rprtat,,
muitiresolution inalysis (although not all wakelet base-, ar, i,isocet' " r ,"-A:
multiresolution analyses). A multiresolution analvsis ., , is dkiu;

a sequence of subspaces V,, c of 1: 2(b) such that

1) V,1  I V,, . I for all T.,
2) V,, -- ,0 ,

3) V,, is dense in I ' 1), and
4) h1tt1 V,. .- h(2t - V,,

together with a function V0 such that the -hctio o0 ,t4., .,
lares (if f, 'ft - . -. forms an orthonormal basis for Vk,. , , t ...

multiresolution analvsi we have f - V( - V. i k
orthonormal basis for \X , there must therefort xi- :;calar c. k-,,..;

fit• CI., ti2t K).

his is referred t, aS Wie (reduced) dilation equation, and ts sk;1it: 'I
the scalhn l function. It can be proved that it we define the mv,I, h'.

9(tI I c c f, 2t ki
kc-,

(where N is as defined below), then (I will generate an orthonormal ha,',- ,r

L" l, ( of the form ;g,, k ,,. C. cf. Section 4. From (1.2), it tollows that pruPer-
ties of the wavelet g such as continuity, differentiability, etc., are determin'd
by the corresponding properties of the scaling function f
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Remark 1.1. For the Haar system,

Vc =- rt : t is constant on each interval[k, k -+ 1

the induced dilation equation is f(t) =- f(2t) - f(2t - 1) (i.e., Ce = c 1
and all other ck =s 0), the scaling function is f Xiei 1, and the wavelet is the
Hlaar wavelet a(t) W- ,(t) - f(2t) - f(2t - I).

To tind wavelet bases for L2 (91), it suffices to construct multiresolution
analyses. One method of achieving this is the following. Choose a set (f
coefficients ,ck; and solve the corresponding dilation equation (1.1) for the
scaling function f. If f is orthogonal to each of its integer translates then
define V0 to be the span of the integer translates of f and define %',, for n1 ,
as the appropriate dilation of Vc (i.e., V,, - span;fnkjk). If V, 0
and if V,, is dense in L2 (tN) then (V,, , f) is a multiresolution analysis, and
therefore the wavelet g defined by (1.2) will generate an affine orthonormal
basis for [ 2 (•i . If this is the case then we say that the coefficients ck have
determined the multiresolution analvsis ( V,,, f(.

There are obviously two separate difficulties in this appioach, nanlyv,

1) solving a given dilation equation to find a scaling function, and
2) determining conditions under which a multiresolution analysis will

follow from such a scaling function, i.e., conditions under which f will
be orthogonal to its integer translates, etc.

We survey results on these two problems in this paper. A shorter nur-ev,
which also includes a discussion of the application of wavelets to fast sinai
processing algorithms, is 1331.

The first problem, that of solving a general dilation equation, is not
restricted in application to wavelet theory. In particular, dilation equatIons
play a role in spline theory, interpolation and s-ubdivision methods, and
,mooth curve generation [2, 4, 5, 17, 20, 19, 2'). 30]. Although we tocus
in this paper on resuliý by', groups involved in wavelet research (including
Cohen, Colella, Daubechies, Heil, Lagarias, L.awton, Mallat, and Meyer),
many of the ;ame or related results hav,, been independently obtained bv
,roup, involved in these other areas (including Berger, Cavaietta, 1)atumen,
Deslauriers, Dubuc, Dyn, Eirola, Gregory, Levin, Micchelli, Prautzsch, and
Wang). In some cases, results by these other groups were obtained earlier or
are more complete than the ones we discuss.

In Sections 2 and 3 we consider two methods of solving general dilation
equations. The methods in Section 2 are based on the use of the Fourier
transform. We prove results due to Daubechies and Lagarias showing that
every dilation equation has .i solution in the sense of distributions ..nd
that integrable solutions, if they. exist, are unique up to multiplication by a
constant. We then present results of Daubechies and Mallat which show
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when integrable solutions to dilation equations will exist, and results of
Colella and Heil showing when they will not (these results do not completely
characterize those dilation equations which have integrable solutions).

In Section 3 we present a time-domain based method for solving certain
dilation equations, due to Daubechies and Lagarias, which utilizes linear
algebra. This method produces continuous, integrable scaling functions if
appropriate conditions hold. Colella and Hell have proved that this method
characterizes those dilation equations which have continuous, integrable
solutions.

In Section 4 we consider the second problem. We show that if the
coefficients {ck(, determine a multiresolution analysis then necessarily

C2k Y 1 = 1 (1.3)
k k

and

CkCkcf21 = 2 6et forevery I.K Z, (1.4)

where bi is the Kronecker delta, i.e., biN = 1 if i = i and 0 otherwise. We then
prove a result due to Lawton which shows that (1.31 and (1.4) are "almost"
sufficient to generate a wavelet orthonormal basis. In particular, Lawton
has proved that if (1.3) and (1.4) are satisfied then {Jgk',,.kEz will be a tight
frame, i.e., the reconstruction property

h '-h, 9,1 0) gr9Tk for all h [_2(,)q) (1.5)

will be satisfied, although {gnk Eýn,k• need not be an orthogonal set. (The
general theory of frames was developed by Duffin and Schaeffer in [181
in connection with nonharmonic Fourier series. The connection between
frames and wavelet theory is surveyed in [23], and researched in depth in
[131.) We also discuss more complicated conditions, independently derived
by Lawton and Cohen, which are both necessary and sufficient to ensure
that a multiresolution analysis, and therefore a wavelet orthonormal basis,
is generated. Lawton has proved that almost all choices of coefficients ýctk
which satisfy 11.3) and 11.4) also satisfy these conditions for orthogonality.

For simplicity of presentation, we assume throughout this paper that
coefficients {ck ý aregiven which are real with only co,. _c•N nonzero, i.e., we
consider only Daubechies-type wavelets). In Sections 2 and 3, we assume in
addition that (1.3) is satisfied. These conditions are not necessary for many
of the proofs, and many of the results in which they are necessary can be
modified for more general situations. The fact that the coefficients ýck, are
real implies that the scaling function f will be real-valued.
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Given these restrictions, the Haar system is of course the only example
with N = 1. It can be shown that multiresolution analyses can be produced
only when N is odd. We will use the case N = 3 to illustrate many of
the results in this paper. For this case, assumption (1.3) reduces to the
statement cO + c2 = c1 + c3 = 1, i.e., the collection of four-coefficient dilation
equations with the given restrictions is a two-parameter family. We select the
independent parameters to be co and c3, and represent this collection of four-
coefficient dilation equations as the (Co, c3 )-plane. Figure 1.1 shows several
geometrical objects in the (Co,C 3 )-plane. The following results regarding
these geometrical objects are discussed in this paper.

1) There are no integrable solutions to dilation equations corresponding
to points on or outside the ellipse, with the single exception of the point
(1,1).

2) There do exist integrable solutions to dilation equations corresponding
to points on and inside the circle, and inside the shaded region.

3) There are continuous, integrable solutions to dilation equations in a
large portion of the triangle, and no continuous, integrable solutions
outside the triangle.

4) There are differentiable, integrable solutions to dilation equations on
the solid portion of the dashed line.

5) Each point on the circle, with the single exception of the point (1, 1),
determines a multiresolution analysis and therefore a wavelet basis for
L2 (9j). We refer to this circle as the circle of orthogonalitv.

Throughout this paper, L"(9i) will denote the Lebesgue space of p-
integrable functions on the real line, with norm JifI1, = (f if(tJJ' dt) ' for
1 <_ p < oo and ;If 11 = esssupIf(t)I. The inner product of functions f, g
is (f, q) f f (t) g(t) dt. The Fourier transform of an integrable function f
is f(-y) = f f(t) eiyt dt. Integrals with unspecified limits are over the entire
real line.

2. Fourier methods

By considering the Fourier transform of the dilation equation, we can prove
that every dilation equation has a solution in the sense of distributions.
Consideration of the smoothness and decay of the Fourier transforms of
these distributions can indicate whether or not these distributions are given
by functions on the real line. We assume throughout this section that (1.3)
is satisfied.

Some notation is required to adequately describe distributions. We let
S(9i) denote the Schwartz space of infinitely differentiable, rapidly decreas-
ing functions on the real line, and let S'(91 denote its topological dual, the
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Figure 1.1: Circle of orthogonality, ellipse, line, triangle, and shaded
region.

space of tempered diqtributions. For functions Wp we define the translation
operator -W(t) = q)(t - a) and the dilation operator D11 ytt -

Translation and dilation of a distribution -v -S'(!8) is defined bv duality, i.e,
KT~v,ýp) v,T_.(1 ) and IDV,, p4) a 1 ',-vD, 1 4)1. With this notation,

the dilation equation 11.1) has the form = ck.D2Ikf. 71¾n :fort:,we.,av
that -v c S' (93) is a scaling distribution if

'v Yck D2Tkv,
k

ie., if ýIv, pV) ck (D2 T;kV, (P) for all (p S(9M). By taking Fourier trans-
forms, we therefore have that v is a scaling distribution if and only if

D 2vý rn'i,
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where mo(y) = (1/2) " Ck eikY. If it is the case that -9 is a function on TR then
this is equivalent to

i,(2y) = Tn(y)i'(y) for a.e. y E 'R. (2.1)

Assume now that -, is a continuous function on 9Z. Then we
can iterate (2.1), obtaining (formally) -,(y) = i,(y/2n) -I too(y/ 2 i) -4
"i'(O) Fl' moAy/2ý). Daubechies established that this infinite product
converges, and proved with Lagarias the following result, cf. [12, 15].

Theorem 2.1.

1) P(-y) = H' to(y'/2i) converges uniformly on compact sets to a con-
tinuous function which has polynomial growth at infinity.

2) Define f to be the tempered distribution such that f = P. Then f(2-y,
ton(y) fly) for all y, so f is a scaling distribution. The support of f is
contained in [0, N].

3) If-v is another scaling distribution such that -v is a function on ýR which
is continuous at zero then -v = v,(0) f.

4) If a nonzero integrable solution to (1.1) exists then it is f, up to multi-
plication by a constant, and J f(t) dt = 1.

We call the distribution f defined in Theorem 2.1 the canonical scaling
distribution. Other solutions to the dilation equation are given in [151, and
certain classes of solutions are characterized in [11].

The proof of Theorem 2.1 requires only that T ck - 2; if this is not the
case then a canonical solution of the dilation equation can still be defined,
but the uniqueness results of Theorem 2.1 will not hold. Even with the
assumption T ck - 2, uniqueness in function spaces other than L '(R) may
not hold. For example, the Hilbert transform H-v of any solution Iv of a
dilation equation is also a solution of the same dilation equation. Since H
maps LP MR into [P(91) for 1 < p < oo, uniqueness cannot hold in any of
these spaces. Additional uniqueness criteria and methods of generating new
solutions to dilation equations from known solutions are given in [11 ].

Existence of an integrable solution of a dilation equation is not guaran-
teed. The following, from [111, is an easily checkable necessary condition for
the existence of such solutions, based on the fact that the Fourier transform
of an integrable solution must decay at infinity.

Theorem 2.2. Given x ý [0, 27t). Assume that the set

ýx mod 271, 2x mod 27T ... , 2" 1x mod 27ný

is invariant mod 27t under multiplication by 2. If

J Imo(2ix)( >_ 1 and nmo(2-'x) # 0 for all j ? 1
i
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then the canonical scaling distribution is not an integrable function, and
therefore there do not exist any integrable solutions to (1.1).

Remark 2.3. Consider the case N = 3. The set {2nT/3,47T/3} is invariant
mod 2n under multiplication by 2, and Imo(27i/3) m.o(47T/3)l >, I for all
(Co,C3) on and outside the ellipse shown in Figure 1.1. The additional
hypotheses of Theorem 2.2 are also satisfied for all but countably many of
these points, and therefore for almost no point on or outside the ellipse can
an integrable solution to the corresponding dilation equation exist. All but
one of the countably many remaining points are also eliminated when the
3-cycle {27r/7,47T/7,87t/7} is checked in addition [11]. The remaining single
point is (1,1); the integrable solution to the dilation equation corresponding
to this point is f = (1/3)X[0 ,3 ).

Theorem 2.2 deals with non-existence of integrable solutions by estab-
lishing conditions under which the Fourier transform P = f of the canonical
scaling distribution f will not decay at infinity. Alternatively, by imposing
sufficient decay on f we can obtain f G L2 (91), and therefore f E L' VR)
since f has compact support. This is made precise in the next theorem, due
to Daubechies [12]. The notation used in the theorem is as follows. Since
2to(n) = -(--1)kck = F-C2k -- -C2k,1 = 0, wecan factora term of the
form 1 + eiv from tno(y). If the zero at 7t has multiplicity at least L then
oo('y) = ((1 + eiY)/2)L Q(y), and therefore

"0 (/siny/2) L
f(y) = mo(Y/2j) -y/2 /2 Q(y/2').

i I j

Theorem 2.4.

1) If IIQIko < 2 L-112 then the canonical scaling distribution f is an inte-
grable function.

2) If IIQJJK < 2 L-1 then the canonical scaling distribution f is a continu-
ous, integrable function.

Proof. We prove only the first statement.
Set M(-y) = [-I• Q(y/2i); this is a continuous function. Define R =
J 'Xj-j.jIjI,; then since M(2y) = Q(y) M(y) we have 1IM X[- 2 "2 "

IIQII• R, whence IM(y)j <_ C h1,liog 2 IIQII for some constant C. Therefore,

If(y)12 < C' (siny/ 2 ) Ii
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where p = 2L - 1 - 21og 2 iIQIk~ and C' is another constant. Since p > 0,
((sin y/2)/(y/2))'1' is integrable, and therefore f e L2 (9i). Hence f E
L2 (9i), and therefore f is integrable since it has compact support. I

Remark 2.5. For N = 3, the multiplicity L is one except for those points on
the dashed line shown in Figure 1.1; for those points, L = 2.

The region of points (co, c.1) for which the hypotheses of the first part of
Theorem 2.4 is satisfied with L = I is the shaded region shown in Figure 1.1,
i.e., integrable scaling functions exist for all points in this region [DII (see
also Remark 2.7 for an additional region).

No points in the (cO, c3 (-plane satisfy the second part of Theorem 2.4
with L = 1. For L = 2, i.e., c. = 112-co, Theorem 2.4 implies that continuous
solutions exist for - 1/4 < cc < 3/4. This result is inferior to the one obtained
in Section 3, where it is shown that continuous scaling functions occur on
this line precisely when -1/2 < co < 1, and in fact are differentiable if
0 < co < 1/2 (i.e., on the solid portion of the line shown in Figure 1.1).
Moreover, it is shown in Section 3 that continuous scaling functions occur
over a large region of the (cOcC.)-plane, including the regions shown in
Figures 3.1-3.6.

Eirola has taken a different (but still Fourier-based) approach in [21].
He obtains conditions under which scaling functions will be continuous and
estimates for the Sovolev exponent of continuity for these scaling functions.
In Section 3 we discuss a time-domain method for obtaining estimates for
the Holder exponent of continuity of scaling functions.

We end this section with an adaptation of an existence result due to
Mallat [27]; part of the proof we give is due to Lawton [24].

Theorem 2.6. If

Il'O(y)12 + -IMC(.y + 7T)12  -1 for all y,

then the canonical scaling distribution is an integrable function.

Proof. Set

tJ(Y) = X1_2"r,.2tol(Y) O (y). (2.2)

By Theorem 2.1, u,, converges uniformly on compact sets to the Fourier
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transform of the canonical scaling distribution f. Now,

1 1 
2f= 71  _' 2

2" l n 22"n l 2
=1 im(i)j dy + J0 HTm( + 2 V

2n12) M ) ý2dy

i 2
2" ,

<•! iII1rro (• dy
-- 2', I

= i n 1l2,

and, by a similar argument, 1U, 1 = 2ra. Therefore ýu,,• is contained in the
ball in L2 (91) of radius v/2-7 and therefore has a weak* accumulation point.
Since u-n(y) --4 f(y) pointwise, this accumulation point must be f, whence
f tz L[2(91) Since f has compact support, it is therefore integrable as well. I

Remark 2.7. For N = 3, equation (2.2) is satisfied for all points (cc,c3; on
and inside the circle shown in Figure 1.1. Therefore, there exist integrable
solutions for all dilation equations corresponding to such points. By the
remark following Theorem 2.4, integrable solutions also exist for points in
the shaded region in Figure 1.1. The union of these two regions does not
exhaust the set of four-coefficient dilation equations which have integrable
solutions, cf. [11].

3. Matrix methods

In [161, Daubechies and Lagarias proved sufficient conditions under which
a dilation equation has a continuous, integrable solution (or, more gener-
ally, an integrable and n-times differentiable solution). In particular, they
proved that if the joint spectral radius p( lCv, Tilv) of two N , N matrices
'c, 1 (whose entries contain only the coefficients !ck,) restricted to a certain
N -- 1 dimensional subspace V is less than one then the canonical scaling
distribution f is a continuous and integrable function, and, moreover, is
1-161der continuous with H61der exponent Lx ? - log 2 p(Tblv, Tilv 1. We out-
line this result in this section. In [10], this result is extended to a necessary
and sufficient condition; in particular, it is shown there that the canonical
scaling distribution f is a continuous and integrable function if and only if
p(Tow,TlJw) < 1, where W is an appropriate subspace of V, and that in
this case o( = -log 2 p( T olw,iTilw). It is conjectured in [101 that W = V in
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general, except for a set of coefficients of measure zero, and it is proved in [9]
that p(Tolw, TIw) = p(Tolv, TIv) for all choices of coefficients with N < 3.

We assume throughout this section that (1.3) is satisfied.
Given the coefficients lck}, define the N e N matrices ro and T, by

(To)i, = c2i-j-1 and (TI ii = c 2i-1 . For example, for N = 3 we have

To= c c c) and Ti= c3 c

0 C.1, C2 0 0 c•

For x 1 [0, 1], x k 1/2, define

2x, 0< O x< 1/2,
2x-l, 1,1/2<x <_ I,

i.e., if x =.dld 2 d; ... is the binary decimal expansion of x then -rx -
.dzd3.... Although T(1/ 2 ) is not uniquely defined, this ambiguity will not
pose any problems in the analysis.

We say that a function f is H61der continuous if there exist constants
K, oc such that f (x) - f (y)} <- KIx - i ' for all x, 1 j R. The largest such
exponent cx is the H61der exponent and the corresponding smallest constant
K is the HF61der constant.

The relationship between the dilation equation (1.1 and the matrices
ic, II is given in the following result from [16].

Proposition 3.1.

1) Assume f is a continuous and integrable scaling function. Define the
vector-valued function '(xl for x T "0, I" by

f(x)
f(X + 1)

"v(xi (3.1)

f(x ; N 1)

Then v is continuous on 0, 1 and satisfies

VIO0) ( VN(1) - 0,

v'i 1 (0) : vi(l) forti I . N .. 1,

Oix) -- TJ,v(Tx) for x -. dd, .... [0,11, x 1/2,

v(1/2) =- Tov(I) = Tlv(0), (3.2)
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where vi(x) is the ith component of v(x). Moreover, if f is Holder
continuous with H61der exponent a then the same is true of v.

2) Assume v is a continuous vector-valued function on [0, 1] satisfying
(3.2). Define the function f by

0, x<_0orx>N, (33)f =vi(x), i-1 _x<_i,i=l .I _ N.

Then f is a continuous and integrable scaling function. Moreover, if
v is H61der continuous with H61der exponent o then the same is true
of f.

The fundamental theorem on the existence of continuous, integrable
scaling functions is the following result from [16]. The notation used in the
theorem is as follows. Let V denote the subspace

V -- fi :RN :U1 - - UN r= 01,

andletMbethe(N- 1). (N-1)matrixMi =C2 i j-Apointx - .d ... d
[0, 1] with a finite binary decimal expansion is called a dvadicpoint.

Theorem 3.2. Fix any norm on 'RN, and assume there exist constanL';
C > 0 and 0 X,- I such that

:(TId, .~ j 1~.•; - CV"N3.4)

for every choice of di .... d,,, t 0, 11 and every m > 0. Then the following
statements are true.

1) l is a simple eigenvalue of ],, Ti, and M.
2) M has a right eigenvector (a ,....N I )t for the eigenvalue 1 such

that a I + .-. 4 ON .I - 1

3) Set v(0 - (0, .... ON )t and define v\x) for x -. d, .. .d,, 0, 1
by

I - ld, . f(, v(0). 13.5)

Then vI,(x) -t .. VN (X) I for every such x.
4) v is bounded on the set of dyadic points in [0, 1].
5) v is H61der continuous on the set of dyadic points in [0, 11 with Holder

exponent a log 2 A, and has a unique continuous extension to [0, 1
which is H61der continuous with the same exponent 0.

6) v satisfies (3.2), and therefore the function f defined by (3.3) is a con-
tinuous, integrable scaling function and is H61der continuous with
exponent o(.
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Proof. Full details of the proof can be found in [16]; we sketch some selected
points below.

1) follows from the fact that V has dimension N - I in _RN, and that M
is a submatrix of both To and T1.

2) follows from 1) and the fact that (1. 1) is a left eigenvector for M
for the eigenvalue 1.

3) Since (1. 1) is a common left eigenvector for To and T, for the
eigenvalue 1,

V(X) +- + VN ..... )v(x)

= (1. 1) Td, "T1 ,,,v(0)
= (1.. I)v(O)

= 1.

5) Choose any dyadic x d, ... dk e [0, 1] and assume g > x is also
dyadic. If 2"-1 < y - x < 2-` with m > k then x = .d.. .d,,, and

= .di..dn f I... d , for somej. From 3), v(T"y)-v(0) e V, so

fIv(ij) - v(x)HI = I Td, Td,, ((T "y) - v(0)) 1

11 I(Td, " -Td,,,)Iv !l IIV(,'ny ) -- V(O )11

•< 2LCA'•

= 2 L C;A- 1 (2- .T.. 1 0og. A

2 2L CA-' lij - x1- _"9, ,

where L = sup'flv(t)jj : dyadic t _ [0, 1]] < co by 4). Thus v is Holder
continuous from the right on the set of dyadic points in [0, 1! with Holder
exponent a 1> - log 2 A. A similar proof establishes H61der continuity from
the left.

6) Given x = .d ... dr dyadic, we have v(x) = T
d, (Td,.. T-,,,v(0))

Tav(Tx). By continuity, this holds for all x c- [0, 11. I
Examples of norms on 9RN are HuH!, = (1uilI" +.. + UN 'T") for

I <_ p < ooand ljul -max{Iu,.I•UNI,.
Condition (3.4) is most easiiy analyzed in a spectral form, as follows.
The joint spectral radius of a set of N , N matrices ýAo_.. A, • is the

straightforward generalization of the usual spectral radius of a single matrix,
namely,

p(Ao. AT} = lim sup A,
1l~ --- cx

where

= max lAd, -Ad,,, 111r
diEýO, ,,}
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The joint spectral radius was first introduced by Rota and Strang [321. Recent
articles are [3, 141.

Lemma 3.3.

1) For every A > p(A,..... A,,) there exists a constant C > 0 such that
A ', < C A'" for every m.

2) If there exist C, A > 0 such that All'` ! CA.'" for every rn then
p(Ao ..... A ,) <- A.

It follows from Lemma 3.3 that (3.4) is equivalent to p( ltv, II 1 . 1
(however, p(Tl v, T, v- 1 is not equivalent to A',' %. C for every 70).

The joint spectral radius can be difficult to compute, except in special
cases. For a single matrix A, p(A) is simply the usual spectral radius of A
and is therefore the largest of the absolute values of the eigenvalues of A.
This is not true in general, i.e., if we define

U111 :: max p(A,,, A,,,.1

then p(Ac, .... A,,) a- ,- max p(Ac )._ p(A,,) . However, we do have
the following, cf. [16].

Lemma 3.4.

1) 0,, - P(A, .... A,,) M,,, tor everv m.
2) p(AL ..... A,, ) is independent of the choice of basis, i.e., it 13 is any

invertible matrix then p(BAoB . BA,,B -) - p(A.... A,).
3) If there exists an invertible matrix B such that BAeB--',.... 13A, B

are all simultaneously symmetric, then p(A.... A,,) -- oy.

Berger and Wang have proved that p(A..A,, ) lim sup ..,. and
therefore p(Ae... A,,I - sup a,, 131.

We return now to consideration of the matrices le, 11. Since V has di-
mension N - 1,anappropriatechangeofbasisgivesp(loiv, lI. 1\ p(SO. S1 1,
where S(,, S, are (N . 1) , (N - 1 ) matrices (not necessarily unique).

Remark 3.5. For N - 3 we can set

S" - ( c" c ) and S, (1 -c ;-, c O)
C ci c" ci ) 0 C ,

cf. [9). The shaded area in Figure 3.1 shows the set SS of points Ic,, cd)
for which So and S1 can be simultaneously symmetrized with p(Sc, Si1 <
1. Continuous, integrable scaling functions therefore exist for all points in
this region.
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2

1.5

- -

"I[I

-6.50 1.5

Figure 3.1: Region SS where simultaneous symmetrization is possi-
ble and leads to continuous scaling functions (Shade~d area).

In the regions where simultaneous svmmetrization is not possible,
Lemma 5.4 can be used to estimate the joint spectral radius.

Remark 3.6. Set N 3, and let C, ..... be the set of Point-' fc"' c suk ;I
that p( SO, S, ) -,A.. I with the choice of norm 11 liy iheorem 3.2
continuous, integrable scaling functions exist for all point!, in ,ln% CI "
Figures 3.2-3.4 show C, 1 for several choices of p, i.e., the sets obtained by
considering the matrices S,,, Si1 directly (since AI max' Sc 11 S, 'I)

Figure 3.5 shows the region C2 1 ,obtained by considoring, for each
point (c(,, c;~), the Euclidean space norm 1 1, of all 65536 possible products

-S, of S, and S1 of length 16.
The union of the regions shown in Figures 3.2-3.5, plus the region SS

shown in Figure 3.1, is shown in Figure 3.6. Continuous, integrable scaling
functions therefore exist for all points in the shaded area in Figure 3.6. By
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2

1.5

- -.5 -'1 - .5 1-5 2

Figure 3.2: The set C i,(shaded area).

Remark 3.10, there are no continuous, integrable scaling functions on or
outside the solid boundary shown in Figure 3.6.

Note that half of the circle of orthogonality lies inside the shaded area
in Figure 3.6, and half lies outside the solid line. Therefore there exist rmans'
wavelet bases with N -ý 3 for which the wavelet is continuous, cf, Figures
3.7 and 3.8.

For large in, direct computation Of AIT, is impractical. The following
algorithm can be used to select a subset of matrices which can be used to
estimate p(A ... A,) [10],cf. [16].

Proposition 3.7. Given p -- p(Ao.. A,). For each of the matrices
.(...A,, in turn, implement the following recursion.

Given a product P = Adj, ---Ad,,,.- If IIPH11'/" < p then Aeep P as a
building block. Otherwise, repeat this step with each of the products
PA . .PA, in turn.
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1.5

-I I-2 -1.5 - 1 -0.51. 2

-0.5-

-2

Figure 3.3: The set C2 .1 (shaded area).

Label the resulting set of building blocks P I.  P, and let m, be the length
of the product Pi. Then the following statements hold.

1) There is an r . 0 such that if P = A,,, -A,,,,, is any product of the
matrices A0(.  A,,then P P, .Pi, R where R is some product of
at most r of the matrices A, ..... A,.

2) p(Ao ..... A,} ) m axHl1PH'1 ''"' .... , ir P ....

This algorithm can be used to significantly shorten the time required
to estimate a joint spectral radius.

Remark 3.8. For N = 3 and (cc,c ) = (.6, - .2), for which simultaneous
symmetrization is not possible, we compute (using the norm 11 011) A, .737
and A, - .682. The computation of AI required the calculation of 8192
matrix products; however, the algorithm given in Proposition 3.7 equals
this estimate after only 94 matrix product computations. A deeper search,
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2

1.5-

-\ - I - - I

,

Figure 3.41: The set C-,, (shaded area).

with a maximum matrix product length of 73, required only 1415t6 ma-
trix product computations and resulted in the estimate p(S 0,,S~ 0 ý.66 1.
Even if A7 ; could be computed it would not improve this estimate, e.g.,

14~~ ~ 14-- IIl02 l12 lj7

0S ) S S i S< s 0~1 SV 1 S2
1~ 663. These computations, and

the significance of the point (c1 , c 1) - .6, -. 2), are explained in detail inl
[9]; note, however, that the W-ilder exponent of continuity for thle scal-
ing function determined by the coefficients (CLI,C3) --- (.6, .2) is at least
- log, .661 -z.598, and therefore this scaling function is smoother than the
standard four-coefficent example, the Daubechies scaling function D4,. which
is determined by the coefficients (co, c,;) = ((I + v/3-)/4, (1 - v/,)/14), and
whose H-folder exponent of continuity is approximately .550. These two scal-
ing functions are shown in Figures 3.7 and 3.8. Each of these two choices of
coefficients lies on the circle of orthogonality and determines a multiresolu-
tion analysis for L2 (91).

Theorem 3.2 is extended to a necessary and sufficient condition in [ 101.
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1.5-

1.5 2

-HI

-1.5.

-2
Figure 3.5: The set C2,1,, (shaded area).

We briefly indicate now the method used to obtain the converse result. Given
an N , N matrix A and an eigenvalue A of A, set U,\ = {,u c CN : (A -- A))kit -
0 for some k > 01. By standard Jordan decomposition techniques we
can write CN = H'A ;. W, where W is a unique A-invariant subspace of CN.
Given v C CN we say that v has a component in U,\ if v - u + w where
u C U,\, w C W, and u - 0. The following result is from [10].

Theorem 3.9. Assume v is a continuous vector-valued function on [0, 11
such that (3.2) holds, and let T = Td, .. ' Tdn be any fixed product of the
matrices To, Tr1. Let x c [0, 1] be that point whose binary decimal expansion
is x - .dl ... d,,d ... d . ...... If

1) A is an eigenvalue of TIv, and
2) there is some z E [0, 1] such that v(x) - v(z) has a component in HA,,

then INA < I and the Holder exponent of continuity of v is at most
- log 2 All/.
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1.5

-2 -1.5 -1 -0.5 1.5 2

-05-

-1.5

-2

Figure 3.6: Union of the sets SS, C1 ,1, C2 ,1, C•, 1 , and C 2, 16 (shaded

area); boundary of the set F 16 (solid line).

Since p(TolvTlv) = supa, is the supremum of the absolute val-

ues of the eigenvalues of every (Td, ... Td,,,) v, it follows that if the hy-

potheses of Theorem 3.9 are satisfied for each product I = Td, • • • Tt,,, then

p(Tolv, Tlv) <_ I with c'. < 1 for all Tn, and the H6lder exponent of v satis-

fies o( < - log 2 p(Thlv, T1 lv). Therefore, if the hypotheses of Theorem 3.9 are

satisfied for each product T = Td, -.. Td., then Theorem 3.9 is the converse

to Theorem 3.2, except for the possibility of one special case, namely,

sup cn 1 and or,,, < I for all nt.
m

It is unknown whether this special case can actually occur. It is proven in

[91 that the hypotheses of Theorem 3.9 are always satisfied if N _< 3 and it is

conjectured in [10] that they are always satisfied in general except for a set

of coefficients of measure zero. Methods for determining the validity of the
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Figure 3.7: Scaling function corresponding to (Co, c3) = (.6,-.2).
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Figure 3.8: Daubechies scaling function D 4 .
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hypotheses of Theorem 3.9 for any specific choice of coefficients are given
in [10].

Remark 3.10. Set N = 3 and define Em {(cO,c3) : Um >, 1]. By Theorem
3.6, no dilation equation determined by a point in E,, can have a continuous,
integrable solution. The set E is precisely the boundary and exterior of the
triangle shown in Figure 1.1. The solid line in Figure 3.6 shows a numerical
approximation of the boundary of E 16 [9]. By previous remarks, continuous,
integrable scaling functions do exist in the shaded region in Figure 3.6.

The results of this section can be extended from consideration of con-
tinuous solutions to n-times differentiable solutions. If f is such a solution
then its derivatives f(i) satisfy the dilation equations

f (M t) = 2j ck f(jI(2t - k).

Therefore the vector (f ! I ).....i'(N - 1 ))t is a right eigenvector for the
matrix M for the eigenvalue 2-j. As M is an (N - 1) > (N - 1) matrix, f can
therefore possess at most N - 2 derivatives. This can always be achieved for
an appropriate choice of coefficients [16].

The following modification of Theorem 3.2 for the case of higher deriva-
tives is from [16].
Theorem 3.11. Assume that the coefficients ýcký satisfy the sum rules

1'(-1 Iki Ck = 0 for = 0,..., n. Define V,, = Cj LN : = 0, j =

0,..n,, where e= (li,2.. N). If p(T0jv,TWv,,j < 2" then there
exists an n-times differentiable solution f to (1.1), and the n-th derivative
f0"' of f is H61der continuous with exponent o ý - log 2 2" p(T!v,, lv,, I

Remark 3.12. For the case N = 3, differentiable solutions can exist only on
the solid portion of the line shown in Figure 1.1. None of these solutions can
be twice differentiable. In particular, for N = 3, no wavelet which generates
an affine orthonormal basis can be differentiable since wavelets must be
derived from points lying inside of the circle of orthogonality.

4. Orthogonality

In this section we consider the relationship between the choice of coefficents
)ck , and frame or basis properties of the associated wavelet. We assume N
is odd in this section.

We require the following lemmas. C, (f) denotes the space of all con-
tinuous functions on TR which have compact support. The proof of the first
lemma can be found in [27].

d&
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Lemma 4.1. If ({Vn}, f) is a multiresolution analysis then f f(t) dt = 1.

Lemma 4.2. If (1.3) holds then the canonical scaling function f satisfies
Y- f(t - k) = 1 a.e.

Proof. Set Oo = X1o,0 ) and O (t) = - Ck 0j- I (2t - k). Since 6 is continuous,

b(O) = 1, and bi (2 y) = mo(y)6j- I (y), it follows that 0 -- f weakly in
L2 (,R), i.e., (0 ,h h -- (f,h) for all h E L2 (91 ). Note that - Oo(t - k) = 1 a.e.;

by induction, the same is true of 0j, and hence of f. I

Next, we establish necessary conditions on the coefficients ýck , in order
that a multiresolution analysis exist.

Proposition 4.3. If the coefficients {ck} determine a multiresolution analysis
then (1.3) and (1.4) hold. The converse is not true.

Proof. Integrating both sides of the dilation equation implies that T- Ck = 2,
since Jf f(t) dt is nonzero by Lemma 4.1. Since f is orthogonal to its integer
translates,

260t =2 ff(t)f(t +1)dt

-2 Yc ck If(2t-j)f(2t i-21--k)dt
i'k

Y ECkCki2[,

k

so (1.4) holds. This, combined with the fact 7- ck = 2, implies (1.3).

To see that (1.3) and (1.4) are not sufficient, consider the coefficient
choice cc = 1, cl = ... = CN-1 - 0, CN = 1. These coefficients satisfy
(1.3) and (1.4), yet the canonical scaling function f -- (1,AN) X1 ,.n, is not

orthogonal to its integer translates if N > 1. I

Remark 4.4. For N 3, the set of points in the (co, c O-plane which satisfy
both (1 .3) and (1 .4) is precisely the circle of orthogonality shown in Figure 1.1.

Equations (1.3) and (1.4) are equivalent to

MOo(0) 1 and mC(rt) ( 0 (1)

and

]to(y)[2 + Imo(Y t_ 7t)1 2 = I for all y. (4.2)

Equation (4.2) implies that, in signal processing terms, mo (Y) and ro (-y + 7T)

form a quadrature mirror filter pair. Such filter pairs induce fast digital signal
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processing algorithms, e.g., subband coding. Daubechies has characterized
those trigonometric polynomials m0 which satisfy (4.1) and (4.2) in [12].

Although (1.3) and (1.4) are not sufficient to ensure that {ck, will gen-
erate a multiresolution analysis (and therefore that {gfnkn,,kEZ will be an
orthonormal basis), Lawton has proven that (1.3) and (1.4) are sufficient to
ensure that the sequence {gnk},nkEZ will satisfy the reconstruction property
(1.5) of an orthonormal basis. Such a sequence is called a tight frame. (1.5)
alone does not imply that glkfn.kkkZ is an orthogonal sequence or a basis,
i.e., in general the summation in (1.5) is not unique. See [18] or [23] for
exposition on frames and their properties.

The following theorem and proof are from [24].

Theorem 4.5. If the coefficients {ck} satisfy (1.3) and (1.4) then {gkJ , is
a tight frame for L2 (9R).

Proof. We proceed in four steps.
1) From (4.2) and Theorems 2.6 and 2.1, the canonical scaling distribu-

tion f is an integrable function with support contained in [0, N] and satisfies
Jf(t) dt = 1.

2) Define the operator P, : L2 (9}) -i L2(91) by

P~h= l, f,ýk) f~k. (4.3)
k

We claim that P,, -ý I as rn -4 +oo and P, -4 0 as rt --) -oo, where I is the
identity operator on L2 (9).

First, however, we show that the operators 1[P,, are uniformly bounded
in norm. Since supp(fnk) C In. = [k/2n, (k + N)/2'1, with n fixed each
set supp(fk) can intersect at most N other supp(fj). Therefore, for any
scalars -[oki,

1 2
k k

N ',2 11f112  ( lak 2, (4.4)

e.g., [22, Prop. 2.4.10]. Therefore,

IIPnhIIŽ2 , N' '2 H f 12 ( T, (fnk)12) 1 2 (4.5)
k

Now, for each r = 0,... N - 1, the sequence (ffIN ( 1•r ]t• is an orthogonal
collection of functions since their supports are disjoint. Therefore, by Bessel's



{ 39 Methods of solving dilation equations }

inequality, F-1(I,fnj1N frj 2 _< )Iht12 }fq2. Combining this with (4.5) we
obtain )lPjih.()2 •< N ()f)l2 11h.1 2, and therefore sup )JPnj 2 < N )f2 < 0o.

Because the operators {P•} are uniformly bounded in norm, to prove
P, h •- h. as n -4 +oo for all h. E L2 (91) it suffices to consider h in a dense
subset of L2 (9*), say h. E C:(ýR). For such an h, since f-k fnk(t) = 2" 2 a.e.
(Lemma 4.2), we can write

2

h.-n2= (9 2-ni 2 h.It) - (h,fnk))f,,k(t dt
k

12

< N1
,'2 ( 11(2- -2 h(t) _ (hI, ufk) )fn k W (4.6)

k

<N 1 2 )) ,2) 2,
k

where we have used (4.4) again and where

ank = sup 12' 2 h(t) - (h., fnk~i.
tEink

To see that L (2 nT -4 0 as nt --4 -oo, define

1K = sup Jh(s) - h(t) and ý-n - 2kX
S,tElfl, k

Note that h.(t( --4 0 pointwise as nv --- +a + since Iht C, (.R). Further,

ý f1,o and Ink C [,o for all k, so hn s• I for nv > 0. As h, is clearly
integrable, it follows from the Lebesgue Dominated Convergence Theorem
that fhn(t)dt --4 0 as n -i +0o. Now, since f fk(t)dt 2-, 2 (Lemma
4.1), we have for t • Ink that

ý2-n 2tK(t) - (h., fk)j P1 ( Mt -- h(S)) f "k (S)

S(f~ )h(t) - h(s))2 ds) (f If 'k(S)12 ds)
-< 11fl 1 2 ý x2 ( l s

Therefore, <k ank < II1t S h.(s)ds -, 0 as rt -4 +oo, which, combined
with (4.6), implies that Pnh -4 h in L2 (R) as n. -4 +oo.

A similar proof shows that P,,h --4 0 as rt --4 -oo.

3) Define the operator F, : L2 (91) --4 L2() by

Fh TN
k
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We claim then that F. = P - P, for each n c Z. Using the dilation
equation (1.1) and the definition (1.2) we compute

Plh + Fh = -(h(t),2n/ 2 f(2"t - k))2n/ 2f(2nt - k)
k

+ Y--(h(t), 21l 2 g(2"t - k))2"'! 2 g(2nt - k)

2" T (h(t),cf(2n 11 t -2k-- p))c, f(2" t - 2k- q)

k,pq
+2" (- Kh(t), { -I )PcCN N(2n .It - 2k-k)

.-I) CN -, f(2{ It -- 2k -q)

-2n " h(ht), (c,,c, 4 (--1)" ' CN-pCN-,,)f(2" t-2k- )

p q ,k

If(2" 't- 2k- q)

2 -(c' 2kC-2k i (-I)''CN-n2kCN 2k)
.1t k

• .h(t ,2 n li2f(2v ))t - j))2(''•T ', 2f{2" , t -_ )

= yjj CU, 1I(h~, f,,• i V~1,iif,,•v
i.1

where

C0,t 2) (- C -2kCl 2k " CN--j 2k CN - t2k0.
k

It suffices, therefore, to show that C(j, 1) = it. Note that by making the
change of index m = -k - i + I - (N 1)/2 (recall N is odd) in the second
summation, we obtain

Cj,21)- Z C2i 21, C21 2k c2 YC -2m1I C21-2m I
17

I l

-2 C- c k C21-k

k

bit,

because of hypothesis (1.4). Similar calculations show that C(2j,2t + 1)
C(2j +- 1,21) 0 and C(2j 4 1,2L - 1) = 6it, as desired.
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4) From steps 2) and 3), -,, F,, = limn- (P,, - P-,,) = 1. That is, for
h. E L2 (9i), h = - Ft = F-~(',q,,k) gnk, whence {g,1k T,,k k is a tight

frame. I

Corollary to 4.5. The coefficients ,CkI determine a multiresolution analysis
if and only if

1) (1.3) and (1.4) are satisfied, and

2) f is orthogonal to each of its integer translates.

In this case, {knkf.. is an orthonormal basis for L2(91).

Proof. Because of Proposition 4.3 we need only prove that if 1) and 2)

hold then {Ck] determines a multiresolution analysis. From 1.4) and the
orthogonality of the integer translates of f,

ýfjI2 lfif t)ý2 t 2 :, i
i,2 dt •" ci ck f (2t - j)f(2t --k)dt = . - ck :1

ff2 Y
2ik k

Therefore "f(t - kL)kaz is an orthonormal set and hence is an orthonormal
basis for Vo - span~fit -- k)lk•,. Defining V,, - span'f,,k'k'.,, we have
V,I _- V,,. because f is a scaling function. The operator P,, defined by v4.3)
is then the orthogonal projection of L2 (T1) onto V,.. Since P, ,0 as ii X
we have -IV,, --- 0', and similarly -'V,, is dense in L 291) since I'll I as
Ti -- -- oo. Thus (IV,,', f) is a multiresolution analysis.

To prove that ' g,, k ,kk•¢ is an orthonormal basis, note that from (1.2),

(1.4), and the orthogonality of the integer translates of t,

1~g ,12 I -1 i C N -i C N - k fI ) f f(2 t k ) d t C: 2 c 1

2f(t k

From the theorem, we know that ii,. k.,- is a tight frame, so for m, i
fixed,

-- (g T1i , qgv,,ji

= gi i, I~g... i g,,k) g,,k)
E (g,,,i, g,,I, g11k.

nk

Thus (g,,,j, g,,k 6,,,,, bik, i.e., g,,k.,,k. C, forms an orthonormal set. This,
combined with the tight frame property, implies that , is an or-
thonormal basis. I
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Lawton and Cohen have independently established necessary and suf-
ficient conditions under which f will be orthogonal to its integer translates.
Lawton's formulation is the following [24, 251. (2 denotes the space of all
square-summable sequences.

Theorem 4.6. Define the operator G : C2 __, C2 by

(Ga iI = I T Ci Ck Q2t Fj-k for a E2.
2i,k

Then the coefficients {ckj determine a multiresolution analysis if and only if

1) (1.3) and (1.4) are satisfied, and
2) Sc is the only eigenvector for G for the eigenvalue 1.

Proof. Note that bot is an eigenvector for G for the eigenvalue 1 because
of (1.4), and the sequence a defined by ca = f f(t) f(t -+ L) dt is also an
eigenvector for G for the eigenvalue 1 since

(Ga)t = I ck f(t) f(t - 2t + i - k) dt
j~k

2 f c1 f(t - j) ( ck f(t - 2t - k) dt

I t t [) dt

Therefore, if 601 is the only eigenvector for G for the eigenvalue I then
at = c 6c, for some constant c, so f is orthogonal to its integer translates. The
converse of this statement is proved in [251. The proof is therefore complete
by the corollary to Theorem 4.5. 1

Lawton has proved, using a result of Pollen [311, that except for a
set of measure zero, coefficients which satisfy (1.3) and (1.4) also satisfy
the condition that 6or be the only eigenvector for G for the eigenvalue 1.
Therefore almost all choices of coefficients satisfying (1.3) and (1.4) will
determine a multiresolution analysis.

Cohen's formulation, which has been shown to be equivalent to Law-
ton's, is the following [61, cf. [25].

Theorem 4.7. The coefficients ýCk; determine a multiresolution analysis if
and only if

1) (1.3)and (1.4) aresatisfied, and
2) there existsa y iý (-71/2,7i/21 such that f-y + 2k7t) - 0 for every k E Z.
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Remark 4.8. For N = 3, the set of points satisfying (1.3) and (1.4) is the circle
shown in Figure 1.1. Of these, every point with the single exception of the
point (1,1) does determine a multiresolution analysis [11].
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1. Introduction

Singularities and irregular structures often carry the most important infor-
mation in signals. In images, the discontinuities of the intensity provide the
locations of the object contours, which are particularly meaningful for recog-
nition purposes. For many other types of signals, from electro-cardiograms
to radar signals, the interesting information is given by transient phenomena
such as peaks. In physics, it is also important to study irregular structures to
infer properties about the underlying physical phenomena [17, 2, 1]. Until
recently, the Fourier transform was the main mathematical tool for analvz-
ing singularities. The Fourier transform is global and provides a description
of the overall regularity of signals, but it is not well adapted for finding
the location and the spatial distribution of singularities. This was a major
motivation for studying the wavelet transform in mathematics [201 and in
applied domains [IIl. By decomposing signals into elementary building
blocks that are well localized both in space and frequency, the wavelet trans-
form can characterize the local regularity of signals. The wavelet transform
and its main properties are briefly introduced in Section 2. In mathematics,
the local regularity of a function is often measured with Lipschitz exponents.
Section 3 is a tutorial review on Lipschitz exponents and their characteriza-
tion with the Fourier transform and the wavelet transform. We explain the
basic theorems that relate local Lipschitz exponents to the evolution across
scales of the wavelet transform values. In practice, these theorems do not
provide simple and direct strategies for detecting and characterizing singu-
larities in signals. The following sections show that the wavelet transform
local maxima give an efficient approach for studying these singularities.

The detection of singularities with multiscale transforms ha, been stud-
ied not only in mathematics but also in signal processing. In Section 4, we
explain the relation between the multiscale edge detection algorithms used
in computer vision and the approach of Grossmann [10] based on the phase

of the wavelet transform. The detection of wavelet transform local max-
ima is strongly motivated by these techniques. Section 5 is a mathematical
analysis of the local maxima properties. We prove that local maxima detect
all singularities and that local Lipschitz exponents can often be measured
from their evolution across scales. We derive practical algorithms to ana-
lyze isolated or non-isolated singularities in signals. Numerical examples
illustrate the mathematical results. The wavelet transform has a different
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behavior when singularities have fast oscillations. This particular case is
studied separately. The local frequency of the oscillations can be measured
from the points where the wavelet transform is locally maximum both along
the scale and spatial variables. This approach is closely related to the work
of Escudie and Torresani 191 for measuring the modulation law of asymptotic
signals [8].

Another important issue is to understand whether one can reconstruct
a signal from the local maxima of its wavelet transform. If it is possible, it
allows us to process a signal's singularities by modifying the local maxima
of its wavelet transform and then reconstruct the corresponding function.
We review the most recent results of Meyer [21] on this completeness is-
sue and describe a numerical algorithm developed by Zhong and one of
us [16], which closely reconstructs a signal from the wavelet local maxima.
One application is the removal of white noise from signals. In such prob-
lems, we often have some prior information on the differences between the
signal singularities and the noise singularities. We describe an algorithm.
that differentiates the signal components from the noise, by selecting the
wavelet transform local maxima that correspond to the signal singularities.
After removing the local maxima of the noise fluctuations, we reconstruct a
"denoised" signal.

1.1. Notation

"* LV(91) denotes the Hilbert space of measurable, functions such that

iIf (x)1' dx <

"* The norm of f E L2 (9j) is given by

_ fll ý I f(x) 2 dx.

"* We denote the convolution of two functions f t L2 (91) and ci _L (N)

by

f * g(x) f (it),g(x -- it) du.

"* The Fourier transform of a function f(x) is written f{(,) and defined by

f(to) J f(x)e-•"" dx.

"* For any function flx), f,(x) denotes the dilation of f(x) by the sale
factor s:

f.ix) = f(x/s).
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2. Continuous wavelet transform

This section reviews the main properties of the wavelet transform. The for-
malism of the continuous wavelet transform was first introduced by Morlet
and Grossmann [11]. Let * (x) be a complex valued function. The function
S(x) is said to be a wavelet if and only if its Fourier transform * (w) satisfies

(•_•_ 12d) dw= --- Cp, < +oo. (2.11

This condition implies that

J 1 (u) du = 0.

Let 'p,(x) 4= (x/s) be the dilation of'p(x) by the scale factor s. The wavelet
transform of a function f c L2 (M) is defined by

Wf(s,x) = f * *" (x). (2.2)

The Fourier transform of Wfls,x) with respect to the x variable is simply
given by

W e(s, (0 = t,((• ) q"(s co,). (2 .3 )

The wavelet transform can easily be extended to tempered distributions,
which is useful for the scope of this paper. For a thorough presentation of
the theory of distributions, the reader might want to consult the book of
Treves [26]. If f(x) is a tempered distribution of order rt and if the wavelet
ýP(x) is n times continuously differentiable, then the wavelet transform of
f(x) give by (2.2) is well defined. For example, a Dirac 6(x) is a tempered
distribution of order 0 and Wb(s, x) = 4),(x), if 4J,(x) is continuous.

One can prove i11 that the wavelet transform is invertible and f(x) is
recovered with the formula

f(X) ZI Wf(s, tu) 4)(u -- x) du- (2.4)

where , * (x) denotes the complex conjugate of ip * (x). The wavelet transform
Wf(s,x) is a function of the scale s and the spatial position x. The plane
defined by the ordered pair of variables (s, x) is called the scale-space plane
[27]. An arbitrary function F(s,x) is not a priori the wavelet transform of
some function f (x). One can prove that F(s, x) is a wavelet transform if and
only if it satisfies the reproducing kernel equation

F(sc,xc) F (s, F xs,x)K(s,,s,xo,x) dx!!,d- (2.5)
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with

K(so, s,xo,x) = *Jiu - x)iP5o(xo -u) du. (2.6)

The reproducing kernel K(so,s,xo,x) expresses the intrinsic redundancy
between the value of the wavelet transform at (s, x) and its value at (so, xo).

3. Characterization of local regularity with the wavelet transform

As mentioned in the introduction, a remarkable property of the wavelet
transform is its ability to characterize the local regularity of a function. In
mathematics, the local regularity of functions is often measured with Lips-
chitz exponents.

Definition 3.1.

- Let m be a positive integer and n oc _ rn + 1. A function f(x) is said
to be Lipschitz ot, at xo, if and only if there exists two constants A and
ho > 0, and a polynomial P,(x) of order m such that for h < hO

If(xO + hI) - PT.(h)l <_ AIhlI'. (3.1)

- The function f(x) is uniformly Lipschitz oc over the interval )a, b[ if and
only if there exists a constant A such that for any xo E 1 a, b[ there exists
a polynomial of order n, P,, (x), such that equation (3.1) is satisfied for
any xo + h E ]a, b(.

w We call Lipschitz regularity of f(x) at xo the sup of all values oc such
that f(x) is Lipschitz oc at xo.

- We say that a function is singular at xo if it is not Lipschitz 1 at xc.

A function f(x) which is continuously differentiable at a point is Lips-
chitz 1 at this point. If the derivative of f(x) is bounded but discontinuous
at xo, f(x) is still Lipschitz 1 at xo and following Definition 3.1 we consider
that f(x) is not singular at xo. One can easily prove that if f(x) is Lipschitz ax,
for ox > n, then f(x) is nt times differentiable at xo and the polynomial P,(h)
is the first n + 1 terms of the Taylor series of f(x) at xo. For rn = 0, we
have P,,(h) = f(xo). The Lipschitz regularity o~o gives an indication of the
differentiability of f(x) but it is more precise. If the Lipschitz regularity axo of
f(x) satisfies nt < oco < n + 1, then we know that f(x) is rn times differentiable
at xo but its ntth derivative is a distribution which is singular at xo, and oco

characterizes this singularity.
One can prove that if f(x) is Lipschitz ax then its primitive g(x) is

Lipschitz ot + I. However, it is not true that if a function is Lipschitz 01 at
a point xo, then its derivative is Lipschitz ax - 1 at the same point. This is
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due to oscillatory phenomena that are further studied in Section 5.3. On the
opposite, one can prove that if ix is not an integer and 0c > 1, a function
is uniformly Lipschitz cc on an interval [a, b[ if and only if its derivative is
uniformly Lipschitz a - 1 on the same interval. This property enables us
to define negative uniform Lipschitz exponents for tempered distributions.
Integer Lipschitz exponents have a different behavior that is not studied in
this article. It is necessary to define properly the notion of negative Lipschitz
exponents for tempered distributions because they are often encountered in
numerical computations.

Definition 3.2. Let f(x) be a tempered distribution of finite order. Let a be
a non-integer real number and [a, bi an interval of 93. The distribution f(x)
is said to be uniformly Lipschitz a on ]a, b[ if and only if its primitive is
uniformly Lipschitz a + I on [a, bh.

For example, the second order primitive of a Dirac is a function which
is piece-wise linear in the neighborhood x = 0. This function is uniformly
Lipschitz 1 in the neighborhood of 0 and thus uniformly Lipschitz aC for aC < 1.
As a consequence of Definition 3.2, we can see that a Dirac is uniformly
Lipschitz ac for a < -1 in the neighborhood of 0. Since Definition 3.2 is not
valid for integer Lipschitz exponents, it does not allow us to conclude that a
Dirac is Lipschitz -1 at 0 but we can derive that its Lipschitz regularity (see
Definition 3.1) is -1 in the neighborhood of 0. Definition 3.2 is global because
uniform Lipschitz exponents are defined over intervals but not at points. I is

possible to make a local extension of Lipschitz exponents to negative values
through the microlocalization theory of Bony [5, 151, but these sophisticated
results go beyond the scope of this article. For isolated singularities, one can

define pointwise Lipschitz exponents through Definition 3.2. We shall say
that a distribution f(x) has an isolated singularity Lipschitz a at xo if and
only if f(x) is uniformly Lipschitz a over an interval ]a, b[, with x0 -- [a, b!,
and f(x) is uniformly Lipschitz I over any sub-interval of [a, b[ that does not
include xo. For example, a Dirac centered at 0 has an isolated singularity at
x = 0 whose Lipschitz regularity is - 1.

A classical tool for measuring the Lipschitz regularity of a function

f(x) is to look at the asymptotic decay of its Fourier transform fl(a). One
can prove that a bounded function f(x) is uniformly Lipschitz a over 9A if it
satisfies:

" If(w)I ( + Iwl') dw < +oo. (3.2)

This condition is sufficient but not necessary. It gives a global regularity
condition over the whole real line but one cannot derive whether the function
is locally more regular at a particular point x0. This is because the Fourier
transform unlocalizes thr information along the spatial variable x. The
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Fourier transform is therefore not well adapted to measure the local Lipschitz
regularity of functions.

If the wavelet has compact support, the value of Wf(s,x0) depends
upon the values of f(x) on a neighborhood of xo of size proportional to
the scale s. At fine scales, it provides localized information on f(x). The
following theorems relate the asymptotic decay of the wavelet transform at
small scales to the local Lipschitz regularity. We suppose that the wavelet
tP(x) is continuously differentiable and that it has compact support although
this last condition is not strictly necessary. The first theorem is a well known
result and a proof can be found in [131.

Theorem 3.3. Let f(x) c L2 (91) and [a, b] be an interval of 9R. Let 0 < ox < 1.
The function f(x) is uniformly Lipschitz ot over any interval Ia + c, b - cE,
with b - a > e > 0, if and only if there exists a constant A. such that for any
x E Ia + e, b - c[ and any scale s > 0,

[Wf(s,x)I <, As . (3.3)

If f(x) E L2 (9q), for any scale so > 0, by applying the Cauchy-Schwarz
inequality, we can easily prove that the function IWf(s, x)I is bounded over
the domain s > so. Hence, (3.3) is really a condition on the asymptotic decay
of lWf(s, x)l when the scales goes to zero. The sufficient condition (3.2) based
on the Fourier transform implies that I(wv)j has a decay "faster" than 1/wl.
Equation (3.2) is similar if one considers the scale s as locally "equivalent"
to l1w. However, in contrast to the Fourier transform condition, (3.3) is a
necessary and sufficient condition and is localized on intervals and not over
the whole real line.

In order to extend Theorem 3.3 to Lipschitz exponents a larger than
1, we must impose that the wavelet iP(x) has enough vanishing moments.
A wavelet O(x) is said to have n vanishing moments if and only if for all
positive integers k < n, it satisfies

J xklp(X-)dx = 0. (3.4)

If the wavelet i([x) has nt vanishing moments, then Theorem 3.3 remains
valid for any non-integer value a such that 0 < ot < t. Let us see how this
extension works, in order to understand the impact of vanishing moments.
Since *( (x) has compact support t)(w) is n times continuously differentiable,
and one can derive from (3.4) that i(w) has a zero of order n at w = 0. For
any integer p < n, '(w) can be factored into

1 )= (iw) 4 1(w). (3.5)
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In the spatial domain we have

d(x) - ,dtPl(x) (3.6)

dPx

and the function * 1 (x) satisfies the wavelet admissibility condition (2.1).
The pth derivative of any function f(x) is well defined in the sense of distri-
butions. Hence,

.. .. *Of (x). (3.7)
Wf S' ) =f ( __=_x (f * SN4%)(x) = P( dxPdx\ d >P

The wavelet transform of f(x) with respect to the wavelet 44x) is thus equal
to the wavelet transform of its pth derivative, computed with the wavelet
41 (x), and multiplied by sP. Let p be an integer such that 0 < a - p < 1.

The function f(x) is uniformly Lipschitz 0c on an interval ]a, bN, if and only if
,i' p is uniformly Lipschitz cx - p on the same interval. Since 0 < c( - p < I,dx"'

Theorem 3.3 applies to the wavelet transform of d f defined with respect todx"et
the wavelet i. 1. Theorem 3.3 shows that A is uniformly Lipschitz L - p

dx"
over intervals Ia + e, b - e[ if and only if we can find constants A, > 0 such
that for x E ]a + e, b - ,

dt'f 1 ll<_k'"
"dxR1- S AI

Equation (3.7) proves that this is true if and only if

lWf(s, x) < A, s'. (3.8)

Equation (3.8) extends Theorem 3.3 for ox < n. If i)(x) has ni vanishing
moments but not rn + 1, then the decay of jWf(s, x)I does not tell us anything
about Lipschitz exponents for a > r. For example, the function f(x) = sin(x)
is uniformly Lipschitz +oo on any interval, but if * (x) has exactly rn vanishing
moments one can easily prove that the asymptotic decay of IWf(s,x)l is
equivalent to s' on any interval. This decay does not allow us to derive
anything on the regularity of the n + 1" derivative of sin(x). For o < 0 and
o( ý Z, (3.3) of Theorem 3.3 remains valid to characterize uniform Lipschitz
exponents. In this case, we do not need to impose more than one vanishing
moment on the wavelet i((x). The proof can easily be derived from the
statement of Definition 3.2.

For integer Lipschitz exponents ox, (3.3) is necessary but not sufficient to
prove that a function f(x) is uniformly Lipschitz ot over intervals I a + c, b - C [.
If cx = 1 and the wavelet has at least two vanishing moments, the class of
functions that satisfy (3.3), for any x E 9t, is called the Zygmund class.
This class of functions is larger than the set of functions that are uniformly
Lipschitz 1. For example, x log(x) belongs to the Zygmund class although
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it is not Lipschitz 1 at x = 0. The reader is referred to Meyer's book (201 for
more detailed explanations on the Zygmund class.

Theorem 3.3 gives a characterization of the Lipschitz regularity over
intervals but not at a point. The second theorem proved by Jaffard (141
shows that one can also estimate the Lipschitz regularity of f(x) precisely
at a point xo. The theorem gives a necessary condition and a sufficient
condition but not a necessary and sufficient condition. We suppose that
tp(x) has n vanishing moments, is n times continuously differentiable, and
has compact support. Similar theorems on point-wise derivability have also
been proved by Holschneider and Tchamitchian [13].

Theorem 3.4. Let n be a positive integer and ot <_ n. Let f(x) E L2 (9q). If f(x)
is Lipschitz cx at xo, then there exists a constant A such that fo- all points x
in a neighborhood of xO and any scale s,

iWf(s, x)l <_ A(s' + Ix - xolf). (3.9)

Conversely, let cx < n•be a non-integer value. The function f(x) is Lipschitz ax
at xo, if the two following conditions hold.

1) There exists c > 0 and a constant A such that for all points x in a
neighborhood of xo and any scale s

JWf (s, x)j <, As'. (3.10)

2) There exists a constant B such that for all points x in a neighborhood
of xO and any scale s

IW f(s,x)l •< B s"' + lxo - -X0 1). (3.11)

As a result of Theorem 3.3, we know that (3.10) implies that f(x) is
uniformly Lipschitz c in some neighborhood of xo. The value c can be
arbitrarily small. To interpret (3.9) and (3.11), let us define in the scale-space
the cone of points (s, x) that satisfy

Ix - xoi < s.

For (s, x) inside this cone, (3.9) and (3.11) imply that when s goes to zero,
IWf(s, x)l O(s'•f. Below this cone, the value of lWf(s,x)l is controlled by the
distance of x with respect to xo, but the necessary and sufficient conditions
have different upper bounds. Equation (3.11) means that for (s,x) below
the cone,

IWf (s, x)j = 0 Ilgx -xolJ
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The behavior of the wavelet transform inside a cone pointing to xo, and
below this cone, are two components that must often be treated separately

Theorems 3.3 and 3.4 prove that the wavelet transform is particularly
well adapted to estimate the local regularity of functions. For example,
Holschneider and Tchamitchian [13] used a similar result to analyze the
differentiability of the Riemann-Weierstrass function. As mentioned in the
introduction, we often want to detect and characterize the irregular parts of
signals. Many interesting physical processes yield irregular structures that
are currently being studied [2]. A well known example is the turbulence
for high Reynolds numbers where there is still no comprehensive theory to
understand the nature and repartition of irregular structures [4]. In signal
processing, singularities often carry most of the signal information. In nu-
merical experiments, it is however difficult to apply directly Theorems 3.3
and 3.4 in order to detect singularities and to characterize their Lipschitz ex-
ponents. Indeed, these theorems impose to measure the decay of VWf(s, x)
in a whole two-dimensional neighborhood of xc in the scale-space (s. XL,
which requires a lot of computation. The next section reviews briefly the
different techniques that have been used to numerically detect singularities
with a wavelet transform. We then explain how singular points are related
to the wavelet transform local maxima.

4. Detection and measurement of singularities

The measurement of the wavelet transform decay, in a whole neighborhood
of a point xc in the scale space (s, xl, is numerically expensive. One technique
that is often used in numerical applications, is to only compute the decay
of IWf(s,x)i at a fixed abscissa x -- xc. This means that we measure the
evolution of the wavelet transform along the vertical line that points to x,, i
the scale space (s, x). Although this approach can provide a good estimate
of the local Lipschitz exponent in many cases, let us explain through a
simple counterexample why it cannot be used reliably. We suppose that the
wavelet q Ix) is symmetrical with respect to 0 and has compact support. Let
f(x) - 0 for x < xo and f(x) 1 for x •. xo. We can derive that Wf(s, x) =
x((x - xcl/s), where X(x) is the primitive of *(x) with compact support.
Since xl(x) is symmetrical, X(x) is antisymmetrical and hence x(O) = 0. We
thus derive that for any s :0 0, Wf(s, x0) -0 . Since X(x) has compact support,
for any x / x0, there exists a scale s, > 0 such that if s < s), then Wf(s, x) - 0.
This proves that along each vertical line in the scale-space plane, the wavelet
transform is uniformly zero for scales small enough. If we estimate the local
Lipschitz exponents from the decay of the wavelet transform along vertical
lines, it "looks like" the function f(x) has no singularity although it does
have a discontinuity at xc. The mistake comes from the fact that we did
not measure the decay of the wavelet transform inside a two-dimensional
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neighborhood of xo, as is required by theorems 3.3 and 3.4. Similar counter-
examples are encountered in many usual signals. The function sin(I/x) is
another type of counter-example which is studied in Section 5.3.

In his pioneering work on wavelets, Grossmann [10] gives an approach
to detect singularities with a wavelet which is a Hardy function. A Hardy
function g(x) is a complex function whose Fourier transform satisfies

q (L) = 0 for u, < 0. (4.1)

Let f E L2 (91) and Wf(s,x) be the complex wavelet transform built with a
Hardy wavelet. For a fixed scale s, (2.3) implies that the Fourier transform
Wf(s, w) is also zero at negative frequencies, so it is also a Hardy function.
Let cp(s,x) and p(s,x) be respectively the argument and modulus of the

complex number Wf(s,x). The argument c0(s,x) is also called the phase of
the wavelet transform. Grossmann [101 indicates that in the neighborhood
of an isolated singularity located at x0, the lines in the scale-space (s, x)
where the phase 0)(s, x) remains constant, converge to the abscissa xc, when
the scale s goes to 0. One can use this observation to detect singularities,
but the phase ()(s, x) is not sufficient to measure their Lipschitz regularity.
Moreover, the value of 0(1 s, x) is unstable when the modulus p1 s, x) is close to
zero. It is thus necessary to combine the modulus and the phase information
to characterize the different singularities, but no effective method has been

derived yet.
In computer vision, it is extremely important to detect the edges that

appear in images, and many researchers [25, 27, 18, 19, 61 have developed
techniques based on multiscale transforms. These multiscale transforms
are equivalent to a wavelet transform but have been studied before the
development of the wavelet formalism. Let us call a smoothing function
any real function 0(x) such that 0(x) = O(1/(1 + x2 )) and whose Fourier
transform satisfies 0(0) # 0. The integral of a smoothing function is therefore
nonzero. A smoothing function can be viewed as the impulse response of a
low-pass filter. An important example often used in computer vision is the
Gaussian function. Let O0 ix) = 1 /sO(x/s). Edges at the scale s are defined as
local sharp variation points of f(x) smoothed by 0i(x). Let us explain how
to detect these edges with a wavelet transform. Let 41 (x) and i,2Wx) be the
two wavelets defined by

tI x)_ d0(x) and 4)2 (x) d 20(X) (4.2)
dx dx2

The wavelet transforms defined with respect to each of these wavelets are
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given by:

W 1f(s,x) = f.*ls(x) and W 2f(s,x) = f * i.2(x). (4.3)

W 1f(sx) = f * -dx ] (x) = s (f * O@)(x) (4.4)
( d/ dx

and

W 2f(s,x) =f.* (x) =S22 d2(f*0.)(x). (4.5)

The wavelet transforms W' f(s, x) and W
2
f(s, x) are proportional to, respec-

tively, the first and second derivative of f(x) smoothed by 0,(x). For a fixed
scale s, the local extrema of W 1f(s, x) along the x variable correspond to
the zero-crossings of W 2f(s, x) and to the inflection points of f * 0 (x) (see
Figure 4.1).

If the wavelet *
2 (x) is continuously differentiable, the wavelet trans-

form W 2f(s, x) is a differentiable surface in the scale-space plane. Hence.
the zero-crossings of W 2f(s, x) define a set of smooth curves that often look
like fingerprints [27]. Let us prove that one can define a particular Hardy
wavelet such that the phase of the wavelet transform remains constant or
changes sign along these fingerprints.

Let 1p3 (x) be the Hilbert transform of ý)2 (x) and iý4 (x) 1(X) + i -( x).
The wavelet 04(x) is a Hardy wavelet. Let W 4f(s,x) - f j,'(x). The real
part of W 4f(s,x) is equal to W 2f(s,x). Hence, the phase 4b(s, x) is equal to
nr/2 or -7t/2 if and only if W2 f(s,x) = 0. Since W 4 f(s,x) is a continuous
function, the phase 4($s, x) cannot jump from n/2 to -7T/2 along a connected
line in the scale space, unless the modulus is equal to 0. If the modulus of
W 4f(s, x) is equal to 0, the phase is not defined and it can change sign at these
points. Similarly to lines of constant phase, the zero-crossings "fingerprints"
indicate the locations of sharp variation points and singularities but do not
characterize their Lipschitz regularity. We need more information about the
decay of IW2f(s, x)1, in the neighborhood of these zero-crossings lines.

Detecting the zero-crossings of W 2 f(s,x) or the local extrema of
W 1f(s, x) are similar procedures but the local extrema approach has several
important advantages. An inflection point of f * 0,(xl can either be a
maximum or a minimum of the absolute value of its first derivative. As in
the abscissa x0 and X2 of Figure 4.1, the local maxima of the absolute value
of the first derivative are sharp variation points of f * 0,(x) whereas the
minima correspond to slow variations (abscissa xi ). These two types of
inflection points can be distinguished by looking whether an extremum of
1W1f(s, xl1 is a maximum or a minimum but they cannot be differentiated
from the zero-crossings of W 2f(s,x). For edge or singularity detection,
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we are only interested in the local maxima of IW1f(s,x)1. When detecting
the local maxima of IWlf(s,x)%, we can also keep the value of the wavelet
transform at the corresponding location. With the results of theorems 3.3
and 3.4, we prove in the next section that the values of these local maxima
often characterize the Lipschitz exponents of the signal irregularities.

f (x)

0_'(X). •

WIf(s,X)

2f (s,x)

Figure 4.1: The extrema of W~f(s,x) and the zero-crossings of
W 2 f(sx) are the the inflection points of f 0,(x). The points of
abscissa x0 and x2 are sharp variation; of f * 0,(x) and are local
maxima of IW f(s, x)j. The local minimum of IW 1 f(s, x)j in x1 is also
an inflection point but it is a slow variation point.

5. Wavelet transform local maxima

5.1. General properties

By supposing that the wavelet iý(x) is the first derivative of a smoothing
function, we impose that x,(x) has only one vanishing moment. In general,
we do not want to impose only one vanishing moment because, as explained
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in Section 3, then we cannot estimate Lipschitz exponents larger than I. In

this section, we study the mathematical properties of the wavelet local max-

ima and explain how to measure Lipschitz exponents. Let us first precisely

define what we mean by local maximum.

Definition 5.1. Let Wf(s, x) be the wavelet transform of a function f Ix).

" We call local extremum, any point (sc,xo) such that ill has a
zero-crossing at x = xc, when x varies.

"* We call local maximum, any point (se,,xo) such that fVt(s,,xo -

ýWf( so, xo)I when x belongs to either a right or the left neighborhood

of xo, and JWf(so, x)l s iWf(so, xo 1! when x belongs to the other side of

the neighborhood of x0.
"* We call maxima line, anv connected curve in the scale space (s, x I along

which all points are local maxima.

A local maximum (so, xo) of the wavelet transform is strictly maximum

either on the right or the left side of the xo. To speak of local maximum of

the wavelet transform is an abuse of language since we really mean a local

maxima of the wavelet transform modulus, but it simplifies the explanations,,.
The first theorem proves that if the wavelet transform has no maximum in a

neighborhood, then the function is uniformly Lipschitz 'X, for t-

Theorem 5.2. let Ti be a strictly positive integer. Let ý) x) be a wVavelet

with compact support, n vanishing mornents and T1 times continuously

differentiable. Let f(xl +: L ,b .

* If there exists a scale so 0 such that for all scales s ' sL' and . atb,

WOs, x) has no local maxima, then for any c - 0 and a -- 0. 1(\ i¶

uniformly l.ipschitz ix on !o , ctb c.
* If i4 (x) is the n."I derivative ot a smoothing function, then f Ix i is uni-

formly [.ipschitz nT on any such interval ia - c, b -- c

The proof of this theorem is in Appendix A. In the following, we sup-

pose that i4,(x) is the n.h derivative of a smoothing function. In this case
we can prove that the function is locally LIipschitz a for the integer value
0- TI !ecause the wavelet i4'(x) has no more than n. vanishing moments.
Theorem 5.2 implies that on the intervals )Q 4 C, b - C, f(x) has no Singu-
larity. Indeed, singularities were defined as points where the function is
not Lipschitz 1. Let us define the closure of the wavelet transform maxima

of f(x) as the set of points xc such that for any c :, 0 and scale so - 0,
there exists a wavelet transform local maxima at a point (si, xi) that satisfy

Ix, - xol < c and s, < so. This closure is the set of points on the real line that

are arbitrarily close to some local maxima in the scale-space (s, x).
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Corollary to 5.2. "'he closure of the set of points where f(x) is not Lipschitz n
is included in the closure of the wavelet transform maxima of f(x),

This corollary is a straightforward implication of Theorem 5.2. It proves

that all singularities of f(x) can be located by following the maxima lines
when the scale goes to zero. It is however not true that the closure of the
points where f(x) is not Lipschitz n is equal to the closure of the wavelet
transform maxima. Equation (5.10) proves for example that if i4,(x) is anti-
symmetrical then for f(x) = sin(x), all the points prr, p E Z, belong to the
closure of the wavelet local maxima, although sin(x) is infinitely continu-
ously differentiable at these points. Let us now study how to use the value of
the wavelet transform maxima in order to estimate the Lipschitz regularity of
f(x) at the points that belong to the closure of the wavelet transform maxima.

5.2. Non-oscillating singularities

In this section, we study the characterization of singularities when locally the
function has no oscillations. The next section explains the potential impact
of oscillations. We suppose that the wavelet ip(x) has compact support, is
nT times continuously differentiable and is the nth derivative of a smoothing
function. The following theorem characterizes a particular class of isolated
singularities from the behavior of the wavelet transform local maxima.

Theorem 5.3. Let f(x) be a tempered distribution whose wavelet transform
is well defined over la, bF and let x,, ]a, Wa . We suppose that there exists
a scale se > 0 and a constant C such that for x '+ la, bl and s < s,, all the
maxima of Wf(s, x) belong to a cone defined by

A - x01 -& Cs. (5.11

Then, at all points x, 7- la,b[, x, : xe, f(x) is uniformly Lipschitz ni in
a neighborhood of x1. l~et a ,. n be a non-integer. The function f(x) is
Lipschitz cc at x, if and only if there exists, a constant A such that each local
maxima (s, x) in the cone defined by (5.1 satisfies

Wf(s,x)( < As'. (5.2)

The proof of this theorem is given in Appendix B. Equation (5.2) is

equivalent to

log IWf(s, x)0 < log(A) + a log(s). (5.3)

If the wavelet transform maxima satisfy the cone distribution imposed by
Theorem 5.3, (5.3) proves that the Lipschitz regularity at xe is the maximum
slope of straight lines that remain above log IWf(s, x)i, on a logarithmic scale.
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The fact that all local maxima remain in a cone that points to xo implies that
f(x) is Lipschitz n at all points x E Iab[, 7# xo. Figures 5.2a through 5.2e
show the wavelet transform of a function with isolated singularities that
verify the cone localization hypothesis. To compute this wavelet transform
we used a wavelet with only 1 vanishing moment. The graphs of *(x) and
its primitive tO(x) are shown in Figures 5.la and 5.1b. The Fourier transform
of 4' (x) is

= sin (c/4)) (54ý((V) = tcW \ w14 ) .(5.4)

This wavelet belongs to a class for which the wavelet transform can be
computed with a fast algorithm [28].

!

U NI(x)

0.

0.4

42

44

4U

4j

..1 475 .4-U 2 0 0.2 0.5 VS7 I

Figure 5.1a: Graph a wavelet 4)(x) with compact support and one
vanishing moment. It is a quadratic spline.

In numerical computations, the input function is not known at all ab-
scissa x but is characterized by a uniform sampling which approximates f(x)
at a resolution that depends upon the sampling interval [161. These samples
are generally the result of a low-pass filtering of f(x) followed by a uniform
sampling. If we suppose for normalization purpose that the resolution is 1,
then we can compute the wavelet transform of f(x) only at scales larger than
1. When a function is approximated at a finite resolution, strictly speaking, it
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OWe(x)
1,4

U.

* .. 75 4 -Z 0 .S as 0.75 1

Figure 5.1b: Graph of the primitive 0 (x) with compact support.

f (x)

Figure 5.2a: In the left neighborhood of the abscissa 0.16, the signal

locally behaves like 1 + (0.16 - x). 2 whereas in the right neigh-

borhood it behaves like 1 + (x - 0.16).6. At the abscissa 0.44 the

signal has a discrete Dirac (Lipschitz regularity equal to - 1). At 0.7,

the Lipschitz regularity is 1.5 and at the abscissa 0.88 the signal is

discontinuous.

is not meaningful to speak about singularities, discontinuities and Lipschitz

exponents. This is illustrated by the fact that we cannot compute the asymp-

totic decay of the wavelet transform amplitude since we cannot compute the

wavelet transform at scales smaller than 1. In practice, we still want to use the
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.4 X

Figure 5.2b: Wavelet transform between the scales 1 and 28 com-
puted with the wavelet shown in Figure 5.1a. The finer scales are at
the top and the scale varies linearly along the vertical. Black, grey
and white points indicate that the wavelet transform has respectively
negative, zero and positive values.

- X

Figure 5.2c: Each black point indicates the position of a local maxi-
mum in the wavelet transform shown in Figure 5.2b The singularity
of the derivative cannot be detected at the abscissa 0.7 because the
wavelet has only one vanishing moment.

mathematical tools that describe singularities, even though we are limited
by the resolution of measurements. Suppose that the approximation of f(x)
at the resolution 1 is given by a set of samples (f,)nEZ with f, = 0 for n n<o
and f,, = I for n, > no, like at the abscissa 0.88 of Figure 5.2a. We would
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X-4X

Figure 5.2d: Local maxima of the wavelet transform of the signal in
Figure 5.2a, computed with a wavelet with two vanishing moments.
The number of maxima line increases. The singularity of the deriva-
tive at 0.7 can now be detected from the decay of the wavelet local
maxima.

like to say that at the resolution 1, flx) behaves as if it has a discontinuity at
n. = rto although it is possible that f(x) is continuous at nio but has a sharp
transition at that point which is not visible at the resolution 1. The charac-
terization of singularities from the decay of the wavelet transform enables
us to give a precise meaning to this discontinuity at the resolution 1. Since
we cannot measure the asymptotic decay of the wavelet transform when the
scale goes to 0, we measure the decay of the wavelet transform up to the
finer scale available. The Lipschitz exponents are computed by finding the
coefficient o such that As' approximates at best the decay of IWf(s, x)l over
a given range of scales larger than 1 (see Figure 5.2b). With this approach,
we can use Lipschitz exponents to characterize the irregularities of discrete
signals. In Figure 5.2b, the discontinuity appears clearly from the fact that
IWf(s, x)l remains approximatively constant over a large range of scales, in
the neighborhood of the abscissa 0.88. Negative Lipschitz exponents corre-
spond to sharp irregularities where the wavelet transform modulus increases
at fine scales. A sequence (f,),E. with f, = 0 for nt 5 no, and f-O = 1,
can be viewed as the approximation of a Dirac at the resolution 1. At the
abscissa 0.44, the signal of Figure 5.2a has such a discrete Dirac. The wavelet
transform maxima increase proportionally to s- 1 over a large range of scales,
in the corresponding neighborhood. In the rest of this paper, we suppose
that all numerical experiments are performed on functions approximated at
the resolution 1 and we consider that the decay of the wavelet transform
at scales larger than 1 characterize the Lipschitz exponent of the function

I
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log(IWf (s,x)1)

4

4

.4

log (s)

Figure 5.2e: Decay of log 2 IWf(s, x)[ as a function of log 2 (s) along
the two maxima lines that converge to the point of abscissa 0.16,
computed with the wavelet of Figure 5.1a. The two different slopes
show that the f(x) has a different singular behavior in the left and
right neighborhood of 0.16 and we can distinguish the two exponents
0.2 and 0.6.

up to the resolution 1. Fast algorithms to compute the wavelet transform
are described in [16, 12]. We shall not worry anymore about the opposition
between asymptotic measurements and finite resolution.

The local maxima of the wavelet transform of Figure 5.2b are shown
in Figure 5.2c. The black lines indicate the position of the local maxima in
the scale-space. Figure 5.2e gives the value of log 2 IWf(s, x)l as a function
of iog2 (s) along each of the two maxima line that converge to the point of
abscissa 0.16, between the scales 21 and 28. It is interesting to observe that
at fine scales, the slopes of these two maxima lines are different and are
approximatively equal to 0.2 and 0.6. This shows that f(x) behaves like a
function Lipschitz 0.2 in its left neighborhood and a function Lipschitz 0.6 in
its right neighborhood. The Lipschitz regularity of f(x) at 0.16 is 0.2 which
is the smallest slope of the two maxima lines.

At this point one might wonder how to choose the number of vanish-
ing moments to analyze a particular class of signals. If we want to estimate
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the Lipschitz exponents up to a maximum value n, we know that we need a
wavelet with at least n, vanishing moments. In Figure 5.2c, there is one max-
ima line converging to the abscissa 0.7 along which the decay of togiWf(s, x)l
is proportional to log(s). The signal was built from a function whose deriva-
tive is singular but this cannot be detected from the slope of log JWf(s, x)I
because the wavelet has only one vanishing moment. Figure 5.2d shows the
maxima line obtained from a wavelet which has two vanishing moments.
The decay of the wavelet transform along the two maxima lines that converge
to the abscissa 0.7 indicates that f(x) is Lipschitz 1.5 at this location. Using
wavelets with more vanishing moments has the advantage of being able to
measure the Lipschitz regularity up to a higher order but it also increases the
number of maxima lines as can be observed by comparing Figure 5.2c and
Figure 5.2d. Let us prove this last observation. A wavelet * (x) with nt + 1
vanishings moment is the derivative of a wavelet 4) (x) with nt vanishing
moments. Similarly to (4.4), we obtain

d a ,Wf(S.X) = S (f* W(x) = S W If(s,x). (5.5)

Wfsx)=dx T x

The wavelet transform of f(x) defined with respect to qi(x) is proportional
to the derivative of the wavelet transform of f(x) with respect to i'l(x).

Hence, the number of local maxima of iWf(s, x)l is always larger than the
number of local maxima of IW1f(s, x)l. The number of maxima at a given
scale often increases linearly with the number of moments of the wavelet.
In order to minimize the amount of computations, we want to have the
minimum number of maxima necessary to detect the interesting irregular
behavior of the signal. This means that we must choose a wavelet with
as few vanishing moments as possible but with enough moments to detect
the Lipschitz exponents of highest order that we are interested in. Another
related property that influences the number of local maxima is the number of
oscillations of the wavelet 0 (x). For most types of singularities, the number
of maxima lines converging to the singularity depends upon the number of
local extrema of the wavelet itself. A Dirac b(x) gives a simple verification
of this property since W6(s,x) = l/siý(x/s). A wavelet with n vanishing
moments has at least nt + I local maxima. In numerical computations, it
is better to choose a wavelet with exactly n. + I local maxima. In image
processing, we often want to detect discontinuities and peaks which have
Lipschitz exponents smaller than 1. It is therefore sufficient to use a wavelet
with only one vanishing moment. In signals obtained from turbulent fluids,
interesting structures have a Lipschitz exponent between 0 and 2 [31. We th, is
need a wavelet with two vanishing moments to analyze turbulent structures.

Let us suppose that the wavelet iP(x) has a symmetrical support equal
to [-K, K1. We call the cone of influence of xo in the scale-space plane the set
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of points (s,x) that satisfy

Ix- xoj < Ks.

It is the set of point (s,x) for which Wf(s,x) is influenced by the value of
f(xJ at xo. In order to characterize the regularity of f(x) at a point xo, one
might think that it is sufficient to measure the decay of the wavelet transform
within the cone of influence of xo. Theorem 3.4 proves that this is wrong in
general and that one must also measure the decay of the wavelet transform
below this cone of influence. This is due to oscillations that can create a
singularity at xo. The next theorem shows that if we suppose that f(x) has
no such oscillations, then the regularity of f(x) at a point xo is characterized
by the behavior of its wavelet transform along any line that belongs to a
cone strictly smaller than the cone of influence. Section 5.3 explains why
this property is wrong when f(x) oscillates too much. In the following we
suppose that i (x) is a wavelet which is n times continuously differentiable,
has a support equal to [-K, K], and is equal to the n" derivative of a function
O(x). We also impose that 0(x) is strictly positive on the interval I - K, K].

Theorem 5.4. Let x0 E 91, f(x) E L_2 (91). We suppose that there exists an
interval ]a, b[, with xo G ]a, b[, and a scale so > 0 such that the wavelet
transform Wf(s,x) has a constant sign for s < so and x E [a, bf. Let us
also suppose that there exists a constant B and e > 0 such that for all points
x E [a, bN and any scale s

IMf(s, x) I •< Bs'. (5.6)

Let x = X(s) be a curve in the scale space (s,x) such that Ixo - X(s)I _< Cs,
with C < K. It there exists a constant A such that for any scale s <- so, the
wavelet transform satisfies

IWf(s,X(s))I , As Y with 0 <, y <_ , (5.71

then f(x) is Lipschitz o at xo, for any c < y.

The proof of this theorem is in Appendix C. One can easily prove
that the sign constraint over the wavelet transform of f(x) is equivalent to
imposing that the nth derivative of f(x) is a distribution whose restriction to
la, b[ has a constant sign. Theorem 5.4 shows that the regularity of f(x) is
controlled by the behaviour of its wavelet transform in the cone of influence,
if its rth derivative does not have an oscillatory behavior that accelerates in
the neighborhood of xo. A similar theorem can be obtained if we suppose
that the rtth derivative of f(x) has a constant sign over Ia, x0 [ and [xo, b[ but
changes sign at xo. This means that in the neighborhood of xo, Wf(s, x) has
only one zero-crossing at any fixed scale s which is small enough. When s
goes to zero, the zero-crossing curve converges to the abscissa xo. In this case,
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we need to control the decay of the wavelet transform along two lines that
remain respectively in the left and the right part of the cone of influence of x0.

From Theorem 5.4, one can compute the Lipschitz regularity of non-
isolated singularities from the behavior of the wavelet transform maxima.
We test whether the ,avelet transform has a constant sign in the neighbor-
hood of x0 by testing the sign of the wavelet transform local maxima. It is
also sufficient to verify (5.6) along the lines of maxima in the neighborhood
of x0. The Lipschitz regularity of f(x) at x0 is computed from the decay of
the wavelet transform along one line of maxima that converges towards xc.
Let us emphasize again that if at each scale the wavelet transform has only
one zero-crossing in a neighborhood of x0, Theorem 5.4 can be extended
by measuring the decay of the wavelet transform along two curves that are
respectively in the left and the right parts of the cone of influence of x0.

A "devil staircase" is an interesting example to illustrate the application
of Theorem 5.4 to the detection of non-isolated singularities. The derivative
of a devil staircase is a Cantor measure. For the devil staircase shown in
Figure 5.4a, the Cantor measure is built recursively as follow. For p = 0,
the support of the measure .io is the interval [0,1], and it has a uniform
density equal to 1 on [0, 11. The measure j, is defined by subdividing each
domain where •ip~i has a uniform density equal to a constant c > 0, into
three domains whose respective sizes are 1/5, 2/5 and 2/5. The density of
the measure ýIp is equal to 0 in the central part, to c/3 in the first part and

to 2c/3 in last part (see Figure 5.3). One can verify that .f 1, (dx) = 1. The
limit measure p., obtained with this iterative process is a Cantor measure.
The devil staircase is defined by:

f~x W I.Lo (dx).

Figure 5.4a shows the graph of a devil staircase and Figure 5.4b its wavelet
transform computed with the wavelet of Figure 5.1a. For a devil staircase,
we can prove that the maxima lines converge exactly to the points where the
function f(x) is singular. There is no maxima line that converges to a point
where the function is not singular.

Proof. By definition, the set of points where ,ne maxima lines converge is
the closure of the wavelet transform maxima, and the Corollary to 5.2 proves
that it includes the closure of the points where f(x) is singular. For a devil
staircase, the support of the points where f(x) is singular is equal to the
support of the Cantor measure, which is a closed set. It is thus equal to its
closure. For any point x0 outside this closed set, we can find a neighborhood
Ixo - c, xo + cl which does not intersect the support of !L (x). On this open
interval, f(x) is constant so for s small enough and x E ]xo - c/2, xo + e/2[,
Wf(s, x) is equal to zero. The point x0 therefore cannot belong to the closure
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of the wavelet transform maxima. This proves that the closure of the wavelet
transform maxima is included in the singular support of f(x). Since the
opposite is also true, it implies that both sets are equal. I

For the particular devil staircase that we defined, the Lipschitz regu-
larity of each singular point depends upon the location of the point. One
can prove [31 that at all locations, Lipschitz exponent oc satisfies

log(2/3) < 0< log(1/3)
log(2/5) log(1/5)'

Hence, (5.6) of Theorem 5.4 is verified for E < log(2/3)/log(2/5). Since a
devil staircase is monotonically increasing and our wavelet is the derivative
of a positive function, the wavelet transform remains positive. Theorem 5.4
proves that the local Lipschitz regularity of f(x) at any singular point can be
estimated from the decay of the wavelet transform along the maxima line that
converges to that point. Figure 5.4c shows the position of the maxima lines in
the scale-space. The renormalization properties of the Cantor set appear as
renormalization properties of the graph of maxima lines. Muzy, Bacry and
Arneodo [23] have shown that one can precisely compute the singularity

spectrum f(a) of multifractal signals from the evolution across scales of the
wavelet transform local maxima. These results are particularly interesting
for studying irregular physical phenomena such as turbulences [23].

0 1

P 0

1/5 2/5p - 1 ______ __

p -2- -

p -- 3 ... .

Figure 5.3: Recursive operation for building a multifractal Cantor
measure. TheCantor measure is obtained at the limit of this iterative
procedure.

5.3. Singularities with fast oscillations

If the function f(x) is oscillating quickly in the neighborhood of xo, then one
cannot characterize the Lipschitz regularity of f(x) from the behavior of its
wavelet transform in the cone of influence of xO. We say that a function f(x)
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Figure 5.4a: Devil staircase.

Figure 5.4b: Wavelet transform of the devil staircase computed with
the wavelet of Figure 5.1a. Black and white points indicate respec-
tively that the wavelet transform is zero or strictly positive.

has fast oscillations at xo if and only if there exists a > 0 such that f(x) is not
Lipschitz t at xo but its primitive is Lipschitz a+ 1 at xo. This situation occurs
when f(x) is a function which oscillates very quickly and whose singularity
behavior at xo is dominated by these oscillations. The integral of f(x) av-
erages fOx) so the oscillations are attenuated and the Lipschitz exponent at
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-4 X

Figure 5.4c: Local maxima of the wavelet transform shown in Fig-
ure 5.4b.

xO increases by more than 1. Singularities with such an oscillatory behavior
have been thoroughly studied in mathematics [29]. A classical example is
the function f(x) = sin(I/x) in the neighborhood of x = 0. This function is
not continuous at 0 but is bounded in the neighborhood of 0 so its Lipschitz
regularity is equal to 0 at x = 0. Let g(x) be a primitive of sin(1/x), one
can easily prove that Ig(x) - g(0)l = O(x 2 ) in the neighborhood of x - 0,
so g(x) is Lipschitz 2 at this point. By computing the primitive of f(x), we
increase the Lipschitz exponent by 2 because the oscillations of sin (1 /x) are
attenuated by the averaging effect.

Let f(x) be a function with fast oscillations at xo and let g(x) be its
primitive. Let * 1 (x) be the derivative of ip(x). Since g(x) is Lipschit7 ox + 1,
the necessary condition (3.9) of Theorem 3.4 implies that in a neighborhood
of xo, the wavelet transform defined with respect to *IF (x) satisfies

1WI g (s, ) 0 <_ A (s' '1 +Ix - xotl •) (5.8)

Similarly to (4.41 we can prove that

W1g(s,x) = * ,)s (x) = S(f *44(x) = sWf(s,x).

We thus derive that

IWf(s, x)I •< A (s' + 1lx - xoll 1). (5.9)
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This equation proves that although f(x) is not Lipschitz o(, in the cone of
influence of x, IWf(s, x)I = O(s'). The fact that f(x) is not Lipschitz a cannot
be detected from the decay of JWf(s,x)l inside the cone of influence of xc,
but by looking at its decay below the cone of influence, as a function of
Ix - xci. Since f(x) is not Lipschitz c., the necessary condition (3.9) implies
that for (s x) below the cone of influence of xo, the wavelet transform does
not satisfy iWf(s, x)l = O(0x - xol" ). When a function has fast oscillations, its
worst singular behavior at a point x, is observed below the cone of influence
of xo in the scale-space plane.

Let us study in more detail the case of f(x) = sin(]/x). Since the
primitive is Lipschitz 2, we can take oc = 1. Equation (5.9) implies that in
the cone of influence of 0, the wavelet transform satisfies lWf(s, x)ý = 0(s).
Figure 5.4e shows the wavelet transform of sin(1 /x). It has a high amplitude
along a curve in the scale space (s,x) which reaches (0,0) below the cone ot
influence of 0. It is along this path in the scale-space that the singular part
of f(x) reaches 0. Let us interpret this curve and prove that it is a parabola.
Through this analysis we derive a procedure to estimate locally the size of
the oscillations of f(x).

The function ffx) = sin(l/x) can be written f(x) - sin(wcx, where
CI, = 1 ,'x2 can be viewed as an "instantaneous" frequency. Let us compute
the wavelet transform of a sinusoidal wave of constant frequency W,1 . If
we suppose that the wavelet ql(x) is antisvmmetrical, as it is the case in our
numerical computations, from (2.3) we derive that the wavelet transform o.
h(x) - sin( wox) satisfies

rWh(s, x)! =1 Cos(,ox)1•s1•oPs . 5.10

For a symmetrical wavelet, the cosine is replace by a sine in the right-hand
side of this equation. For a fixed abscissa x, the decay of 'A-h(s, x) as a
function of s is proportional to the decay of Iq1(swce)1V. If ,l(WV)' reaches its
maxima at w - wu,,,, then for x fixed, Wh(s, x J1 is maximum at so -- to,,, (00.
The scale where lWh(s, x)i is maximum is inversely proportional to the fre-
quency of the sinusoidal wave. The value of Wh( s, x) depends on the values
of hlx) in a neighborhood of size proportional to the scale s, so the fre-
quency measurement is local. Since fix) - sin) l/x) has an instantaneous
frequency 0,, I/x 2, for a fixed abscissa x, lWf(s,x 0 is globally maximum
for s z-, , = •,x 2 . This is why we see in Figure 5.4e that the wavelet
transform has a maximum amplitude along a parabola that converges to
the abscissa 0 in the scale-space. This "instantaneous" frequency measure-
ment is based on an idea that has been developed previously by Escudie
and Torresani [91 for measuring the modulation law of asymptotic signals.
The results of Escudie and Torresani have also been refined by Delprat et
al. [81, who explain how to precisely extract the amplitude and frequency
modulation laws from a complex wavelet transform.
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Let us now study the behavior of the wavelet transform maxima. The
inflection points of f(x) are located at x = 1/(rnr), for n c Z. Since the
wavelet *Ix) has only one vanishing moment, all the maxima lines converge
toward the points x = 1/(nit). Since f(x) is continuously differentiable in
the neighborhood of 1/(rtnr), the wavelet transform along a maxima line
converging to 1/(n7T) satisfies

lW f(s,x)) < A,,s. (5.11)

The derivative of f(x) at 1/(nnT) is equal to t-l)T,1 In 2 so one can derive
that A,, = O(n 2 ). It is interesting to observe that along all maxima lines
in the neighborhood of 0, the wavelet transform decays proportionally to
the scale s although f(x) is discontinuous in 0. This singularity in 0 can
however be detected because the constants A, grow to +oo when we get
closer to 0. Figure 5.4f displays the local maxima of the wavelet transform
of sin (ix ). In the neighborhood of 0, at fine scales, the maxima line have a
different geometry in the scale space (s, x) due to the aliasing when sampling
sin(I/x), for numerical computations. Let us now introduce the general
maxima points and explain how they are related to the size of the oscillations
of f(x).

f (x)

Figure 5.4d: Graph of sin (1 ,'x

Definition 5.5. We call general maimunmi of Wt ks, x) a point ( ,i where
'Wf(s, x, has a strict local maximumn within a two-dimensional neighbor-
hood in the scale-space plane (s, x).

Clearly, a general maxima point belongs to a local maxima line as de-
fined by Definition 5.1. General maxima are points where Wtf s, x ) reaches
a local maximum when the variables (,, x vary along a maxima line. Fqua-
tion (5.10) proves that the maxima lines of the wavelet transform ot sin(,y x I
are vertical lines in the scale-space plane Is, x) given by x ri-T, for • Z.. It
4 (, 0 has one glohal maxima, for (, .. 0. at W',, and no other local maxima,
then (5 10! implies that there is only one general maxiimum along each max-
ima Iine and it appear,, at the scale sc a,,,, '(L'e. A wavelet equal to the Wth
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,.X

Figure 5.4e: Wavelet transform of sin(1 /x). The amplitude is niaxi-
mum along a parabola in the scale-space that converges to (0, 0) in
the scale-space.

,. x

Figure 5.4f Local maxima of the wavelet transform.

derivative of a Gaussian has such a property. If 14p(w)I has several local max-
ima, for w , 0, there are several general maxima along each maxima line but
the one where Wf(s, x)l has the highest value is at the scale s,, /wo.
One can thus recover the frequency wcO from the location of this general max-
ima. Figure 5.4g displays the sub-part of each maxima line that is below the
general maxima of maximum amplitude. In the scale-space, these general
maxima belong to a parabola whose equation is approximatively given by
S w ,,/W,ý = Ax 2. This equation is only an approximation because the
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-- X

Figure 5.4g: The maxima line are displayed from the scale where is

located the largest general maxima. The extremity of each maxima
line indicates the position of a general maxima point and it belongs
to a parabola in the scale-space (s, x).

frequency co, varies locally. A finer analysis of this type of property can be
found in the work of Delprat et al. [8]. If f(x) is locally equal to the sum of

several sinusoidal waves whose frequency are well apart, so that they can be
discriminated by i(scu) when s varies (see (5.10)), then we can measure the
frequency of each of these sinusoidal waves from the scales of the general

maxima that they produce. The efficiency of this method depends on how
concentrated is the support of j(iw). Here, we are limited by the uncertainty
principle, which requires that 4)(x) cannot have its energy well concentrated
both in the spatial and frequency domains. To distinguish spectral lines that
are too close, it is necessary to use more sophisticated methods as described
by Delprat et al. [8].

Let us now give a spatial domain interpretation of this frequency mea-
surement. We show that if the wavelet iJ (x) has only one vanishing moment,

the general maxima points provide measurements of the local oscillations
even if the function is not locally similar to a sinusoidal wave. If 4)(x) is the
derivative of a smoothing function O(xi, (4.4) proves that

Wf(sx) = s -(f-

hence

Wf (SX) f' df(u)0 (x-u) du. (5.12)

If locally f(x) has a simple oscillation like in Figure 5.5, has a constant
sign between the two top points xl and x2 of the oscillation. The point
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(so, xo) is a general maximum if the support of 6( ((xo - x)/so ) covers as much

as possible the positive part of df without paying the cost of covering a
domain where dfýx is too negative. This means that the distance between
the two top points of the oscillation is of the order of the size of the support
of O(x) multiplied by the scale so:

X2 - X1 , Kso. (5.13)

This spatial domain interpretation shows that even if the function is not lo-
cally similar to a sinusoidal wave, the size of the oscillation is approximately
proportional to the scale so of the general maxima point. If the wavelet ý)(x)
has more than one vanishing moment, this spatial interpretation is not valid.

f (W)

xl x2

df (x) SO

dx- xO-KsO .. xO+KsO

Slx0 x2

Figure 5.5: We suppose that the wavelet is the first derivative of a
smoothing function O(x). The point (so, xo) is a general maxima of
the wavelet transform of f(x) if the function 0, (x - xo) covers a
domain as large as possible where the function f(x) has a positive
derivative.
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With (5.9), we saw that if a function f(x) has fast oscillations in the
neighborhood of x0, then the regularity at xo depends upon the behavior of
Wf(s, x) below the cone of influence of x0. To estimate this behavior, one
approach is to measure the decay of IWf(s, x)I at the general maxima points
that are below the cone of influence of xo, when we converge towards x0.
Indeed, these general maxima points characterize the size of the oscillations
of f(x) and they give an upper bound for the value of the wavelet transform
along each maxima line. Theorem 3.4 proves that f(x) is Lipschitz a at xC
only if JWf(s, x)( = O/(x - x0 I') below the cone of influence. Hence, f(x) can
be Lipschitz a at a point xo only if the general maxima point (si, xi) below
the cone of influence of x) satisfies

"I f f(s i, xi I = O (1xi - x0lf . (5.14)

This necessary condition gives an upper bound on the Lipschitz exponents
at xc. For f(x) = sin(l/x), (5.14) is satisfied only for a = 0. We thus detect
the discontinuity at x = 0 from the values of the general maxima points.
In most situations, the general maxima points must be used in conjunction
with the local maxima lines in order to estimate the decay of VVf(s, x)! inside
and below the cone of influence of xc.

6. Completeness of the wavelet maxima

We proved that the singularities of a function can be detected from the
wavelet transform local maxima. One might wonder whether the positions
and the values of the wavelet transform maxima provide a complete and
stable representation of f(x). The reconstruction of a function from the local
maxima of its wavelet transform has been studied numerically by Zhong
and one of us 116]. Local maxima are detected only along a dyadic se-
quence of scales (2% ). to obtain efficient numerical implementations. The
reconstruction algorithm recovers signals with a relative precision approx-
imatively equal to 10-2. The remaining error is mostly concentrated in
the highest frequencies. More recently Meyer [22] proved that the wavelet
transform local maxima do not provide a complete signal representation.
He constructed different functions whose wavelet transform have the same
local maxima at all scales. However, these functions mostly differ at high
frequencies and their relative [2(.i) distance is of the same order as the
precision of the numerical reconstruction algorithm. This seems to indi-
cate that the wavelet transform local maxima is "complete" modulo a small
high frequency error that remains to be identified mathematically. This sec-
tion reviews briefly the properties of a dyadic wavelet transform as well
as the algorithm that approximates a functions from local maxima. Sec-
tion 7 describes an application to the suppression of white noise with a local
estimation of Lipschitz exponents.
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We call dyadic wavelet transform the sequence of functions of the
variable x

(W f(2', x))iEz. (6.1)

Equation (2.3) implies that the Fourier transform of Wf(2', x) is given by

Wf(2', wv) = 2 i w)f(w). (6.2)

The function f(x) can be reconstructed from its wavelet transform and the
reconstruction is stable [7, 16] if and only if there exists two constants A > 0
and B > 0 such that

+00

A E 1j(2i w)12 <, B. t6.3)
i -00c

Let us denote by JJWf(2j, x)JI the L2 (.3) norm of the function Wf(2i, x) along
the variable x. As a consequence of (6.3), by applying the Parseval theorem,
one can prove that a dyadic wavelet transform has finite energy

AJf))2  j J)Iw f(2i,x)f12 <_ BýIfI1 2 . (6.4)

This means that (Wf(2ý,x)) 1 . belongs to the Hilbert space t-(L 2 ) of se-
quences of functions (ii (x)),•, that satisfy

S1igJ(x)ý1" < + o

1 -- _':

Similarly to the continuous wavelet transform, the dyadic wavelet transform
is overcomplete. This means that any sequence Igi(x)Y1 E is not a priori the
dyadic wavelet transform of some function f i L_2 (9f). The space V of all
dyadic wavelet transforms of functions in L 2 (j) is strictly included in t2 (1 -).
An orthogonal projection from I2(L2) onto V is defined by a reproducing
kernel equation similar to (2.5) 116).

If the wavelet satisfies the condition (6.3), the Lipschitz regularity of
a function is also characterized by the decay across scales of the wavelet
transform at the scales (21ý.. Theorems 3.3 and 3.4 remain valid if we
restrict the scale to the sequence (2T)jcz [14]. We can thus characterize the
regularity of a function from the behavior of the wavelet transform local
maxima at the dyadic scales. The results and theorems of Section 5 are valid
if we restrict the scale parameter s to (2%)Eý. Figure 6.1b is the dvadic
wavelet transform of the signal in Figure 6.1a, computed with the wavelet
shown in Figure 5.1a. The finer scale is limited by the resolution of the
original discrete signal. We also stop the decomposition at a finite largest
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f (x)

• " I I " =" " " I 1 I

Figure 6.1a: Original signal.

scale. In Figure 6.1b, the largest scale is 2'. The information provided by the
dyadic wavelet transform at scales larger than 26 is given by one function
[16], shown at the bottom. It carries the lower frequencies of f( x). Figure (. lc
displays the local maxima of the wavelet transform. Each Dihac indicates
the position and value of Wf(2i, x) at a maxima location.

Wf (2' x) I

Wf (22 .x) Y

Wf (23 ,x) A

Wf (2 4 ,X) ,

Wf (2' ,x)

Wf (26 ,X)

Figure 6.1b: Wavelet transform computed up to the scale 2".

Figure 6.1 b gives the remaining low-frequencies at scales larger than 2"'.
Since the wavelet is the first derivative of a smoothing function, the

wavelet transform maxima are located where the signal has sharp transitions.
They provide an adaptive description of the signal information. The more
irregularities in the signal, the more wavelet maxima. l.et us now study
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22

scale 
2

24

25 I I

26 . . . 7-

Figure 6.1c: Local maxima of the wavelet transform. At each scale,
each Dirac indicates the position and value of a wavelet transform
local maximum. We also keep the remaining low-frequency infor-
mation shown at the bottom.

Figure 6.1d: Signal reconstructed from the wavelet transform local
maxima shown in Figure 6.1c.

the completeness of this local maxima representation and briefly explain the
reconstruction algorithm introduced by Zhong and one of us [161. We want
to characterize the set S of all possible wavelet transforms that have exactly
the same local maxima as the wavelet transform of f(x). The representation
is complete if and only if the set S is reduced to the wavelet transform of
f(x). Clearly S is included in the space V of all dyadic wavelet transtorms.
The set S is also included in the set f of all sequences of functions (qj(x)jlz
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in t
2 (L2) such that for each integer j, the local maxima of g i(x) occur at the

same locations and have the same values as the local maxima of Wf(2j, x).
For each j - Z, we require that g, (x) belongs to the space H 1 (91) of functions
one-time differentiable in the sense of Sobolev so that their local maxima are
well defined. This other constraint is justified if the wavelet i.(x) E H1' (91)
since it implies that Wf(21 ,x) E H' (93). It is easy to verify that

F n V = S.

If the representation is not complete, then the set S is not reduced to the
wavelet transform of f(x). One can still recover a good approximation
of this wavelet transform if the size of S is "small". The reconstruction
algorithm is based on alternative projections on the set F and the Hilbert
space V. We begin with an initial sequence of functions (g i(x)) IZ arbitrarily
chosen and then project successively this initial sequence on V and F, as
illustrated by Figure 6.2. If the discrete signal has a total of N samples, the
computational complexity of the projections on V and F is O(N log N) [16].
The convergence of the alternative projection algorithm to the intersection
of F and V is not proved. However, in all our numerical experiments, the
algorithm does converge fast. The root mean-square error to signal ratio of
the reconstructed signal is of the order of 5 x 10-2 after 20 iterations on the
projection operators [16]. Figure 6.1d is an example of signal reconstructed
with 20 iterations. The differences with the original function are not visible

on the graph. 1 ,ve increase the number of iterations, the reconstruction
error decrease jut reaches a limit which is of the order of 102. This
limitation of precision is due to the non-completeness of the local maxima
representation. Meyer proved recently [22] that for some particular functions
f(x),one can find high frequency perturbations c(x) such that Wf(21 ,x) and
W(f + -- c2 1 , x) have the same local maxima at all scales 2i. This means that
the solution set S is not reduced to the wavelet transform of fix). However,
the numerical experiments as well as the mathematical counter-examples
seem to indicate that S is small. A precise mathematical characterization
of the set S remains to be done. Once we recover a wavelet transform that
belongs to S, we reconstruct the corresponding signal by applying the inverse
wavelet transform operator. From a practical point of view, the numerical
precision of this reconstruction algorithm is sufficient for a large class of
signal processing applications. The next section describes an application

to denoising.

7. Signal denolsing based on wavelet maxima In one dimension

The properties of a signal can be modified by processing its wavelet trans-
form maxima and then reconstructing the corresponding function. We de-
scribe an application to denoising based on a local estimation of the signal
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initial pointS

solution V

Figure 6.2: The reconstruction of the wavelet transform of f(x) is
done with alternative projections on the set F that expresses the
constraints on the local maxima and on the space V of all dyadic
wavelet transforms. The wavelet transform of f(x) is included in the
intersection F and V.

singularities. The most classical technique to remove white noise from a
signal is to convolve the signal with a Gaussian filter. For a large class of
important signals, the energy of the white noise dominates the signal at high
frequencies whereas the energy of the signal dominates the noise at low fre-
quencies. The Gaussian low-pass filtering attenuates the high frequencies
and keeps the low frequencies. As a consequence, a large portion of the noise
is removed but the sharp variations of the original signal are smoothed. The
fact that most of the signal energy is concentrated in low-frequencies often
indicates that most of the singularities have Lipschitz exponent that are pos-
itive. Our denoising algorithm discriminates the signal and the noise with a
local analysis of the singularity types.

Let us first describe the properties of the wavelet transform of white
noise. Let nt(x) be a real white noise random process and Wn(s, x) be its
wivelet transform. We denote by L(X) the expected value of a random
variable X. We suppose that the wavelet VJx) is real. Grossmann etal. 1I0]
have shown that the decay of [ (lWn.(s, x)! 2 ) is proportional to 1/s. Indeed,

IWrt(s, x)12 
= nlu)Tn(v)liJx -- u)i.Px - v) du dv.

Since n(x) is a white noise, ,L(r,(u)nIv)) = 6(u - v), hence

VL(WnT(s'x)1 2
) J j 6(u v)tp,(x - u)i,,(x - v)du d%.
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We thus derive that

t(lW n(s, X)12) = 111p112 (7.1)
S

At a given scale s, the wavelet transform Wn(s,x) is a random pro-
cess in x. If we suppose that the white noise rt(x) is Gaussian white noise
then Wrn(s,x) is also a Gaussian process. From this property, we prove in
Appendix D that at a scale s, the density of local maxima of the wavelet
transform is

ds - A(7.2)

where *p" (x) is the nt"' derivative of qt(xJ and A a constant between 0.5
and 1. The density of local maxima is inversely proportional to the scale s.
The realization of white noise is a distribution which is almost evervwhere
singular. One can prove that the singularities of Gaussian white noise are
Lipschitz 1/2. Figure 7.1a is a signal obtained by adding Gaussian white
noise of variance I to the signal of Figure 6.1a. Figure 7.1b shows its dvadic
wavelet transform.

f (x)

Figure 7.1a: Signal of Figure 6. la to which we added Gaussian white
noise of variance 1.

Let us suppose that the original signal has isolated singularities whose
L~ipschitz regularities are positive. Since the noise creates singularities whose
l~ipschitz regularity is negative, we can discriminate the local maxima cre-
ated by the white noise from the ones produced by the signal, by looking at
the evolution of their amplitude across scales. If the local maxima have an
amplitude which increases when the scale decreases, it indicates that the cor-
responding singularities have negative Lipschitz exponents. These maxima
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WJ(2' ,x) WIW"'" ...... '?I~ ... . 1 :.... n pf• .~. .... 1'l ...... :2
Wf (2'.x)

Wf (.23 ,x) 
V

Wf (24 ,x) NJ

.7..

Figure 7.1b: Wavelet transform computed up to the scale 2'.

22 .. ... .... ..

scale 23

Figure 7.1c: Local maxima of the wavelet transform. At coarser
scales the maxima of the signal discontinuities dominate the maxima
of the white noise.

are mostly dominated by the white noise and thus are removed. At the lo-
cations where the signal has singularities with positive Lipschitz exponents,
the noises adds singularities with negaive Lipschitz exponents. Mathe-
matically, the sum is a signal whose singularities have negative U. .4chitz
exponents. However, if the signal dominates the noise at low frequencies,
wherever the signal is singular, at coarse scales the amplitude of the local
maxima is mostly influenced by the signal variations. Since the signal sin-
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gularities have positive Lipschitz exponents, at coarse scales the amplitude
of the corresponding maxima do not increase when the scale decreases. This
can be observed in the neighborhood of the discontinuities of the noisy signal
shown in Figures 7.1a through 7.1c.

In order to evaluate the behavior of the wavelet maxima across scales,
we need to make a correspondence between the maxima that appear at
different scales 2i. We say that a maxima at a scale 2' propagates to another
maxima at the coarser scale 2i 1 if both maxima belong to the same maxima
line in the scale space (s, x). Equation (7.2) proves that for a white noise,
on average, the number of maxima decreases by a factor 2 when the scale
increases by 2. Half of the maxima do not propagate from the scale 2
to the scale 2T'' . In order to find which maxima propagate to tile next
scale, one should compute the wavelet transform on a dense sequence of
scales. However, with a simple ad-hoc algorithm one can still try to find
which maxima propagate to the next scale, by looking at their value and
position with respect to other maxima at the next scale. The propagation
algorithm supposes that the maxima that propagate from a scale 2' to a
coarser scale 2i' 1 are the ones which locally have the largest amplitude
and which have a location which is close to a maxima at the scale 21, whose
amplitude has the same sign. Such an ad-hoc algorithm is not exact but ,saves
computations since we do not need to compute the wavelet transform at any
other scale. The denoising algorithm removes all maxima whoe amplitude
increase on average when the scale decreases, or which do not propagate
at larger scales. These are the local maxima that are mostly influenced bV
the noise fluctuations. Figure 7.3a shows the local maxima that are kept by
the denoising algorithm. As expected, these local maxima correspond to the
signal discontinuities. The position and amplitude of the remaining local
maxima is affected by the white noise components in the corresponding
neighborhood. The white noise introduces more distortions at fine scales
because the signal to noise ratio is smaller. The maxima selection algorithm
is based on an analysis of singularity types and thus cannot be used to
discriminate the low-frequency sinusoidal components of the signal from
the white noise. Hence, we do not try to select local maxima below the scale
2', and keep both the signal and the noise components below this scale. This
non-linear filtering algorithm, like a Gaussian smoothing, does not modify
the lowest frequencies but it removes selectively the fine scales components
depending upon the local singularity types.

After the maxima selection, we reconstruct a "denoised" signal with
the alternative projection algorithm previously described. A priori, there is
no guarantee that there exists a function whose wavelet transform has local
maxima that correspond exactly to the maxima that we selected. This means
that the set F that characterizes the maxima constraints might not intersect
the space V of all wavelet transforms (see Figure 7.2). The reconstruction
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algorithm thus does not converge but if we stop after enough iterations (20
in practice), %e reconstruct a sequence of functions which is close to r and
V. The function shown in Figure 7.3b was obtained after 20 such iterations.
As can be observed, the two discontinuities of the original function are still
perfectly sharp. The overshoot is due to the white noise components that
modified the values and positions of the original local maxima, at these loca-
tions. In the smooth signal variations, we can see the remaining components
of the white noise that have been kept at scales larger than 24. This simple
algorithm shows the feasibility to discriminate a signal from its noise with
an analysis of the local maxima behavior across scales. Better strategies for
selecting the maxima can certainly be developed depending upon the appli-
cations. This denoising procedure does not require that the noise is white but
only that its singularities have Lipschitz exponents that can be differentiated
from the signal singularities.

initial point

Pv

V
Figure 7.2: After a modification of the local maxima, in gener.l there
is no wavelet transform whose local maxima are exactly equal to the
one that we selected. H-ence, the set F that carries the constraints on
local maxima does not intersect the space V of all dyadic wavelet
transforms. The algorithm reconstructs a sequence of functions that
is close to r and V.

8. Conclusion

We proved that the wavelet tLansform local maxima detect all the singular
ities of a function and we described strategies to measure their Lipschitz
,egularity. This mathematical study provides algorithms for characterizing
singularities of irregular signals such as the multifractal structures observed
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scale
21

22

23

24

Figure 7.3a: Local maxima kept by the denoising algorithm.

Figure 7.3b: Signal reconstructed from the local maxima shown in
Figure 7.3a. The overshoot at the discontinuity locations is due to
the modification of the maxima amplitude by the white noise.

in physics [23]. Oscillations can also be measured from the general maxima
of the wavelet transform, with a technique similar to the approach of Escudie
and Torresani [9].

From a numerical point of view, it is possible to reconstruct a close
approximation of a signal from the local maxima of its wavelet transform.
We studied an application to signal denoising. The prior information on the
regularity of a signal versus the local properties of the noise are expressed
through constraints on the behavior of the wavelet transform local maxima.
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f (x)

Figure 7.3c: Original signal.

The local maxima model has been extended to two dimensions in order
to detect edges in images [16]. As in one dimension, images can be recon-
structed from the wavelet transform local maxima. This representation of
images with multiscale edges has applications in pattern recognition as well
as compact image coding. An algorithm that selects the important edges for
building a compact image code is described in [16].
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A. Proof of Theorem 5.2

We prove Theorem 5.2 by proving by induction the following proposition.

Proposition A.1 ((P,,)). Let qP(x) be a wavelet that can be written i'x) =

--_dX , where p1 xi is a continuous function of compact support. Let f(xt
be a function and we suppose that for any c -, 0, there exists a constant K_
,,,rh that at all scales s

J f (0 ixtdx <_ K,. (A.I)

If Wf(s, x) has no maxima for x (E ja, b[ and s < so, then for any c > 0, there
exists a constant A, ,, such that for any x c I ci + c, b - cI and s < so,

IAWf(s, x)i I A, ,..s". (A.2)



{ Mallat, Hwang 92 }

If we modify f(x) by multiplying it by the indicator function of [a, b],
we do not modify its regularity on any interval [a + e, b - c]. We shall thus
suppose that f(x) = 0 for x V [a, b]. Let us first prove that (A.l [is satisfied.
Since f(x) E L'([a,b]) and f(x) = 0forx [ia,bl,

fb i

If cb(x)I dx _ If(x)F dx [C 14. (x)[ dx.

With a change of variable in the integral we obtain

f L, (x)l dx = { k(x)I dx.

Hence, fJ" if c iI (x! dx is bounded by a constant independent of the scale s,
as in (A.1). In order to prove the proposition (P,) for n 1, we introduce a
lemma.

Lemma A.2. Let [c, d] be an interval of 91 Let K be a positive constant. Let

g(x) be a function which satisfies

d g(x)j dx < K, (A.3)

and such that [ has no local maxima on [c,di. Let [3 > 0 with 13 <

(d - c)/4. There exists two constants Bf, and Cjý such that

Vx ,- Ic + 1, d - (31, 1g(x)I K-B (A.41

and

,ýx z Ic + 13, d 131, dj < Cý. (A.5)

The constants Bf and Cf only depends upon 13, d - c and K.

We denote g'(x) = Although quite simple, this proof is long

because it includes many sub-cases. We prove (A.4) and then (A.5). In the
following, we only consider the values of g(x) over the interval [c, dl. We
first have two cases. Since Ig'(x)l has no local maximum, either g'(x) has a
constant sign or g'(x) is monotonic.

1) If we suppose that g'fx) has a constant sign then g(x) is monotonic.
Equation (A.3) yields

SId

)g(Ocix -z K and lg~xl dx _< K. (A.6)" fd - f

Since, g(x) is monotonic on [c. dl, these integral constraints imply that

lg(c +±(3)1 < K and lg(d. (A.7)
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To prove (A.7) one must distinguish several cases. For example if
g'(x) is positive and g(x) remains positive, the second integral of (A.6)
implies that !g(d - [3)1 < K/[3 and since lg(c + 3)1 •< lg(d - 13)1 (A.7) is
valid. The other cases are treated similarly. Since g(x) is monotonic,
lg(x)l <_ Max(lg(c + 03)1,lg(d - 1)1), hence (A.4) is satisfied for Bp >_ K

2) Let us suppose that g'(x) is monotonic, for example that it decreases.
The function g(x) is concave. The same proof is valid for a convex
function.

a) We first suppose that g(x) does not change sign on Ic -+ 13, d --- 13[.

i) If g(x) is negative, since it is concave Il(x); <_ Max(jg(c +
r3)),Ig(d-13)1), for x cE ]c + 13,d -13). Since g'(x)is monoton-
ically decreasing, either it is positive at all points of [c, c + 13,
or it is negative at all points of [c + 13, d]. We know that g(x)
remains negative and

J g(x)ldx •< K, Ig(x)I dx < K.

We can thus derive that

lg(c ± 03)1 < Max ( , d-__--

Since 13 _< (b - c)/4, we obtain Ig(c + 311 <• K![3. Similarly

wecan prove thati g(d - 13)1 <• K/i3. Hence ig(x)i • K!13.
ii) If g(x) remains positive, there exists e tj Ic 4 13, d - 13 such

that g(x) *- o(cI for all x e Ic + 13 ,d - 3[. Since g(x) is
concave, one can derive that

f d-Ogx) > g(e)(d - c - 213)Jgix) dx~ 2

Since 13 < (d - c)/4, we obtain g(e) <_ 4K/(d - c). Hence

Ig(x)) _< 4K/(d - c).

b) Let us now suppose that g(x) changes of sign over [c 4 [3, d - 131.
Either both g(c + 13) and g(d - 13) are negative or only one of them
is negative. We only consider the case where both are negative.
The other case can be treated with the same approach. Since g(x)
is concave, it has two zero-crossings at the locations z- and zi,
zo < z1 . Forx E ]c+[3,zo[ Ulzi,d--3[, g(x) is negative and

lg(x)l _< Max(Ig(c + 1)I,lg(d - 13)1). Over [c,c + 131 and [d - 13,d]
g(x) is monotonic. With the same argument as in 1), we prove that

Ig~c + 03)1 <_ K/13 and Ig(d - 03)1 _< K/O3.
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For x E [z1,,z11, a (x) i 0 and there exists e kC ]zz,z,[ such that
g(x) < g(e) for x i zI,,,zi. We must prove that g(e) is bounded.
Since cg'%) is concave over Fzc, zi), one can derive that

g(e)(zi -ZO)

K >- g(x) dx > 2 (A.8)

Let us suppose that g(e) t> K/13. Let L(x) be the affine function
which crosses 0 at the abscissa zo, and is equal to g(e) at the
abscissa e. Before the abscissa Z4, (Ix) is negative and I(x) > gIx)
because g(x) is concave. Hence, It(c + 3/) <- lg(c + 13)! s_ K/1.1. We
know that

1t(c+[3)! zc-c-13
It(e)j e- z

Since 11(c + 13)j _ K/13 and t(e) = g(e) >- K/2, we obtain

e - zCo -> Z- - c - 13.

With the same argument applied between on the second zero-
crossing z, and d 13, we can also prove that

z, - e > d - 3-z,.

Adding these two equations yields

d -c -213 d -c
2 4

If we insert this equation into (A.8), we obtain

8Kd(e • -- c'

Hence, g(e) <_ Max(8K/(d -- c),K/i3). This last case finishes
the proof of (A.4) of Lemma A.2 for a constant B1 such that
B13 > Max(8K/(d - c),k/13).

Let us now prove that g'(x) is bounded. Since Ig'(x)l has no maxima on
the interval Ic + 01/2, d - 1/2), we know that )g'(x)I •< max(jg')c 4-13), g'(d -

V3))) for x : fc + 3, d - 131. Let us suppose for example that Ig'(c + 13)! >i
Jg'(d - 13)). Then, Ig'(x)) is monotonically decreasing on [c + 13/2, c 4 131 and
g'(x) does not change sign over this interval. Hence,

2 F~t- d

Ig'(c + 13)M) < 2 J g'(x)dx = 1g(c + 13/2) - g(c PO3)1 < jB 2.
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Since Ig'(x) <-, Max(Ilg(c + 13)1, 1g'(d - (3)1) for x E [c + 13, d - (31, we derive
that Ig'(xVI is bounded by a constant Co which only depends upon 13, b - c
and K.

Lemma A.3. Let fc, d] be an interval of M. Let K be a positive constant. Let
g(x) be a function which satisfies

d

Sg(x) dx < K,

and such that !a4j/1 has no local maxima on [c, d]. Let 13 > 0 with 13 <--

(d - c)/4. There exists a constant Do that only depends upon 13, d - c and
K, such that

Vx E[c -3d-[(31, i("d-U- < Do. (A.9)

The proof of this lemma is mostly the same as that for Lemma A.2 and
we leave it to the reader.

Let us now prove that the proposition (P,,) is true for rn 1. Since
- d(x) d() ,we derive that

d
¢Vf(s,xl s s f d )(xl.

dx

Our induction hypothesis supposes that 9(x) = f * OV(x) satisfies (A.3) of
Lemma A.2 for c = a + c/2 and d - b -c 1-2. The result of this lemma for

J3 = c/2 and s < so yields

IWf(s,x )[ sC, 2.

This concludes the proof of (A.2) for nt 1. The proof of (P,, I for T -- 2 is

based on Lemma A I. Since 4)(x) - we derive that

2d 2Wf(s x) = 52-- (f*,x.
Sdx2

We can apply the result of Lemma A.3 to g(x) ý f * •(xl, with I3 c12,
c a -+ c/2 and d -- b - c/2. Equation (A.9) yields

jVWf(s, x)I < s2 D, 2,

which finishes to proof of (P,,) for nT v- 2.

Let us now prove that if (P,,) is true, for n )> 2, then (P,, 1) is also true.
Let iP(x) be a wavelet with n + I vanishing moments and f(x) a function

thatsatisfies (A.8). The wavelet q,(x) can be written OP[x) = dx() wherethe
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wavelet X(x) has ri vanishing moments. Let i x be the derivative of f(x)(I),
in the sense of distributions,

df
Wf(s,x) - S- * Xs(x). (A.10)

xx

In order to apply our induction hypothesis (P,) to d x with respect to the
wavelet X(x), we need provehat to for any c > 0, there exists a constant K,
such that at all scales s

, b * )(x) dx_ K,. IA.] 1

Since the wavelet 1,(x) has more than two vanishing moments, the proposi-

tion (P2 ), that we just proved, implies that for any c > 0, if x 'a c - c

1Wf(s,x(I < s2A,.2.

From Theorem 3.3 we derive that f(x) is uniformly Lipschitz a. on the ir-
tervals Ia + c,,- c [, for any o < 2. Hence, '

t
dx is uniformly bounded

on any such interval. One can then easily derive that the condition :A.1 1)
is satisfied. Let now apply the induction hypothesis (P,, ) to d with r-
spect to the wavelet X(X). There exists a constant A, ., such that for any
x ý e- 1 -c,b -t:! and s< so,

df
dx X, (x) A

Equation (A.10) implies that

VW f(s, x) 1 A,.,, s" f

This finishes the proof of (P,, 1
By applying Theorem 3.3 to the statement (P,j), we derive that the

function f(x) is Lipschitz a for any o -. f n. For x- n, Theorem 3.3 does not
apply because it is an integer Lipschitz exponent.

Let us now prove that (A.2) implies that f(x) is Lipschitz t if the wavelet
iPVx) can be written

d0(x)
O {X) .. ... ,t_ ( (A .12)

dx

where 03Ix) is a smoothing function. Let -•a- be the Thderivative of f~x)

in the sense of distributions. Similarly to (A.10), (A.12) yields

Wf(sx) = ,* 0(X).
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Equation (A.2) of the proposition WP, )implies that for anv e > 0 there exists
a constant A, , such that for any x , Ia + c, b - c[ and s se

d_ f A
dxI *A,,,,.

Since the integral of 0(x) is nonzero, this equation implies that --iv is a

function which is bounded by A .,, over the interval 3a C, 1, -•. I Mience

f(x) is uniformly Lipschitz n over the interval ýa t- c, b - c!.

B. Proof of Theorem 5.3

We first derive from Theorem 5.2 that f(x is Lipschitz niat all points different
than x,. Let x, (- 3a,xc,[. For s < s(,, IWf(s,x)I has maxima only in a
cone pointing to xc,. Hence, for c > 0 such that a - c - xc -- c, thtre
exists s, such that for s < s,, and x•, ]a + c/ 2 , x, - c/2', !Wf(s,x)i has no
maxima. From Theorem 5.2 we derive that f(x) is uniformly ljipschitz Tn

in !a + c, xc - cl. From this result we easily derive that f(x) is uniformly
Lipschitz n in a neighborhood of any point xl e Iaxo[. The same proof is
valid for x, G lx,, bl.

Let us now prove that the Lipschitz regularity at xO is characterized by
the decay of the wavelet transform local maxima. Let x, 1 Qa,xoc and x2 .1
Ixc., W. We proved that f(x) is uniformly Lipschitz n in the neighborhood
of x, and x2. The necessary condition of Theorem 3.3 is valid for integer
Lipschitz exponents and it implies that there exists "• such that for s .- sc,

lWf(s,xl)l <- Ais" and IWf(s,x2)1 _ A2sn. (B.1)

For x - 3xi ,x2[ and s < sc, the value of IWf(s,x)l is smaller or equal to the
maximum value among IWf(s,xj)i, IWf(s,x,)[ and the wavelet transform
modulus at all the local maxima that occur at the same scale inside the cone
pointing to xc). Theorem 5.3 supposes that all these local maxima have an
amplitude smaller than As'. Since a < n, we derive from (B1.) that there
exists a constant B such that if x c- )xl,x21 and s < s,

JWf(s,x)H <- Bs•.

Since xO • lx,, x2[, Theorem 3.3 implies that f(x) is Lipschitz ot at xO.



C. Proof of Theorem 5.4

In order to apply Theorem 3.4, we want to prove that there exists a scale SI
and c -- Osuch that ifs < s, and x I - cx:' - ,

'W f(s, x0 '! B (sr x - xo ). (C.11

We prove this by showing separately that there exists two constants B I and
B2 such that

W fBs,x) - 131 s', (C.2i

when (s, x i is in the cone of influence of xo and

kVfIs,x I.-- B, x x I ,C.3 i

when (s, xI is below the cone of influence of x,. Once (C.1I is proved,
Theorem 5.4 is a simple consequence of Theorem 3.4, for A • 3'. For A ),
we cannot apply Theorem 3.4 because we are missing the logarithmic term.
Theorem 5.4 supposes that Wft s, x) has a constant sign in a neighborhood of
xc, and we shall suppose that it is positive. For s < s, and X(As x( C
we have

Wf(s,X(sf I As'. i CA)

We first prove (C.2) and then (C.3) for c (K C)s,,, and si 41k(K C s,.
The wavelet ilxj is the nT'5 derivative of a positive function 0(x) of

support equal to K, K' and which is strictly positive on K, K:. I ence,

W tf(s,X I s"(t " .0, 1 (X I '-0, (C.5)

where f ' (x is the Q'h derivative of f x Iin the sense of distributi(ms. The
function O(x) is a positive function with a strictly positive integral. Since
(C.5) is valid at all scales s .- s,. it implies that f " (x) - 0 for x - cib'
(positive in the sense of distributions). Equation (C.5) can be rewritten

Wf (S'× X " I S"x f" udt

Let (s, x) be a point in the cone of influence of x0, Ax xe, c< Ks. The support
of 0((x u.i/s) is included in ixc 2Ks, xc 4 2Ksl so

Wf(s,xl s" i t x .) t"" iuldit. (C.6)
2K 2K S

Let M max,- K.Ki 0(X. Since 0ix) is continuous and strictly positive
over K, K[, there exists A 0 such that

Vx< [( K C)/2,(K f C)!2iO(x)- AM.
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Lets' -4Ks/(K-- C). We know that ]x- X(s')I _ Cs'. For ut ix - 2 Ks,xo +
2Ks, we derive that I(X~s') - uj/s', (K + C)/2 and therefore

vu : 'xo e-2Ks,xv + 2Ks!, 0(X(s' - ) AM

Since 0 < 0((x - u)/s) "4 M and f" (x) # 0,

IK0 (x--')f 
i

I/A 2K-0 u)(u) du.
dxo"-2Ks "

Equation (C.6) yields
\Vt(s,X) s u f ( U) C),A 0 .... s'- - ( )d

•W t(s',X(s')1. (C.71

We suppose that (C.4) holds so
- t t I A ,4K ,'

W f (,s ' X ( s ) ) -,- A l s r) ) ' K .-C , . S .

We thus derive from C.) that

'A'i(s,x) ! B s with B1  A 4K, (C.8)

Let us now prove that if s x (is below the cone of influence of X,, 'AVfI s, x )
B 2 1x - Xe!Y.

W fls,x) = s`I- f 0 f "t f i I....

Let S2 x - xol/K. Since (x, s) is below the cone of influence of XO, x XC) ,
Ks, sos !i. s,. The support of d((x ul s) is thus included in x,, - 2Ks-, X,
2Ks21 So

Wf(s,x) s" 1 -- S L i) f" )utdu. C .X9)
x0 2K,2 \

Let us now define s2 -:4Ks 2 /'(K C). With the same argument as for (C.7),
we can prove that

Wf(s, X) f- AWf (S2, X W2)) (C. 10)

Equation IC.4) implies

WfIs(,X(s')) A(s'), A§-,X y2 (C.]I

By inserting (C.11) in (C.10) we obtain
A4' C 2

Wf(s,x) K B21x - xOIy with B2  - -,. (C.12)

One can verify that both (C.8) and (C.12) are valid for x I xo - CXC + C)
and s -s withe - 41(K - C)so and s I 4-

1K(K C)so.
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D. White noise wavelet transform

It is well known [24] that the density of zero-crossings of a differentiable
Gaussian process whose autocorrelation is R(T) is

-R2((0) D.1 I

V 7T
2R(O)

where R"'' (T) is the nth derivative of R(-r). If the process is twice differen-
tiable, the density of local extrema is equal to the density of zero-crossings
of the derivative of the process. The autocorrelation of the derivative is
--RI2I(-T). Hence, the density of extrema is

D9.2)

The auto,.orrelation of the Gaussian process Wn( s, x) is defined by

R(T- F(Wn(S,X ý TTW".(S,x))

f nt(.t '4,+x T 1 (X- V)1d4Idv .

Since n.(x) is white noise, I ln(u)n(v)) --- (Mu - v) and we obtain

R(T) ,,t , .piu du. D.3)

From this equation, we can prove that R(4 (04 ( 12o[/s) and RI•2 (0) -

1, 12,, . From (i).2), we derive that the density of extrema of the process
Wn(s, x) is

1"
2 ' (D .4 )

s 1m ' 1:11

At least half of these local extrema are local maxima of WWn(s,x)l. The
number of local maxima depends upon the proportion of local extrema and
zero-crossings of Wn(s, x). Equations (D.1) and (D.3) prove that the density
of zero-crossings of Wn(s, x) is ji4'j[I/(s7[lýiI). The proportion of local
extrema and -ero-crossings of WTx(s, x is independent of the scale, which
proves that the density of local maxima of IWn(s, x)[ is

d, - X~ '2t (D.5)

where A is a constant between 0.5 and I that depends only on I.pfj], [jiP11)
and 14, 12 'I!.
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a Regular and irregular sampling theorems are proved using frames of ex-
ponentials, Gabor frames, and nonharmoiic Fourier series. These include
the Shannon sampling theorem, the Yao-Thomas irregular sampling theo-
rem, and a result dual to the Yao-Thomas theorem. An irregular sampling
algorithm is presented that allows much more general sampling lattices.
These ideas are then applied to the Gabardo-Walker uniqueness theorem to
obtain a corresponding representation theorem.

1. Classical sampling theory using frames

Ordinary Fourier series in 1 2[- , T > 0, that is expansions using expo-
nentials of the form ,e2,6,,1, y,, have been used in mathematics, engineering,
and science for years. Here we give several applications of nonharnionic
Fourier series, that is expansions using exponentials of the form ýe2-hit,, ,•

where the regular sequence of real numbers ýnT I has been replaced by the
irregular sequence ft,, . The difficulty with applying nonharmonic Fourier
series is that they are not orthonormal bases and so the nonharmonic Fourier
series must be interpreted carefully. The concept of a frame provides this
interpretation.

Definition/Proposition 1.1. A sequence {g,9, C H, a separable Hilbert space,
is a frame if there exists constants A, B > 0 such that

V h e H, Allh~I2 < F I(h, g)l' < BIjhjI 2 .
~1

t The work presented here is a short exposition of joint work with John Benedetto, whose
patience, friendship, and teachings have left a deep and positive mark on me. I would also like
to thank Hans Feichtinger and Christian Houdr6 for insights, discussions, and preprints on the
topics discussed herein.
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The constant A (resp. B) is called the lower (resp. upper) frame bound.
If ýg,,[ is a frame, then we have the reconstruction formulas

and

Vh.e H, h = (hgn)S-'g,,
n

where the frame operator S is given by

Sh = -(h,gn)gn.

n

If {g,, is a frame in H, then {S- 1 g,, } is also a frame in H called the dual frame.

Proof. See [4, 9, 31. 1

Example 1.2.

1) Orthonormal bases in Hilbert spaces are frames with the reconstruction
formulas being the orthonormal basis decomposition and the frame
operator being the identity.

2) The exponentials 'Et,, = e-2it'-Y where {t,,} satisfies

T
It.- nT) < L < -4

is a frame for L2 [-2-1T, A] (see Example 1.9). More generally, see Defi-
nition 2.1 and Theorems 2.2 and 2.3.

Remark 1.3. Duffin and Schaeffer invented the concept of a frame to deal
with questions about spanning properties of sets of exponentials. That is,
they were interested in whether a collection of exponentials {Et ,, 1, Et,, =
e-2`,,-Yrn E Z, generated by a sequence of real or complex numbers ýtn,

was complete in L2 [-fl, 01, 0 > 0--i.e., whether each function in L2 [-0, ]
can be approximated arbitrarily closely by a linear combination of exponen-
tials taken from the collection. Much work has been done on this and related
questions as the interested reader may investigate by consulting 12, 17, 15,
201. For our purposes completeness is not enough; we want to decompose
functions as sums of exponentials or other functions. The reconstruction
formulas permit this and represent, until the work on wavelets and related
topics, a neglected aspect of the work of Duffin and Schaeffer. These formu-
las are at the heart of the sampling work which follows.
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Definition/Proposition 1.4. A function f is 0-bandlimited, () > 0, i.e.,
f E PW2, if f E L2 (91) with suppf _C f-0,0)0, where f is the Fourier
transform f(-y) = f f(t)C-2,itY dt. The f0-bandlimited functions are entire
functions of exponential type 0 and conversely, i.e., there exists a constant
A such that

Vz E C, Jf(z)) <_ Ae27tflzI.

Theorem 1.5 (Shannon). Let T, 0 > 0 for which 0 < 0 <_. Then

VfEPWf2, f(t)=TTf(nT)dý (t- rT) inm L2 (9),
nE•.

where f(lT) is the value of f at mlT E .0, where dj is the - dilation of the
Dirichlet (or "sinc") function

d~ M sin t
Tit

and where da (t - nT) is the translation

sin z (t - nT)
d-(t - nT) T

-n(t - nT )

The convergence is in L2 (91) and uniform over 91.

Proof. Consider the frame of exponentials in L2
[_

1 , 21 given
2irty . We kw iocn a m 1 1s u by

{e~nEYnZ- We know this collection is a frame as, upon normaliza-
tion, it is an orthonormal basis in L2 [--L, •1. The frame operator is the

constant multiplier • as

V L 2 1_ 1, S )
V• hL 2 )--Z, -, 5(.) -= -t(,e2")-••

21 21

Vtf

n

= -- h
T

Hence both reconstruction formulas reduce to

f(y) = T (fV), e-27iinl C)>, 2• T1 ()' (1.1)

where 1I(A) is I on (--, A) and 0 elsewhere. The characteristic function

I( I , is necessary as (1. 1) is an expansion in L2 1-A, A], which we view as
a subspace of L2 (i). Applying the inverse Fourier transform and evaluating
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the coefficients produces the desired expansion with L2 (91) convergence. The
uniform convergence can be verified by an advanced calculus argument.

Remark 1.6.

1) The coefficients are the function values at the points fnT},E,,Z, hence

the name "sampling formula." Note that the sampling lattice {nT,
generated the frame of exponentials 'e- 2 n

ivTyJnE . in L2 [- 2-1, 2]

2) The decomposing functions are tanslates of a single T-1-bandlimited
function, d2 (t), the dilated sinc function.

3) The poor decay of the sinc function can be overcome by using an over-
sampling argument that smooths out the discontinuities of 1 , L. This
is accomplished by multiplying both sides of (1.1) by a function ý E
C (9N) with supp _c [--L, -L] and with ý(y) = I for all -y E (-,].

4) Clearly one need not invoke the concept of a frame of exponentials
in the proof above as the exponentials, upon normalization, form an
orthonormal basis for L_[-A, 21. The point is that the proof above
is generalizable to a class of irregular sampling lattices, t,' , instead of
{rtT, where ,t,, is a sequence of real numbers. By doing this, we will
be able to reproduce the classical irregular sampling formula of Yao
and Thomas, obtain a new dual result, and finally produce an irregular
sampling algorithm for sampling lattices with great generality. To
accomplish this we will need a few more facts about frames.

Definition/Proposition 1.7 ([4]). A frame in a separable Hilbert space
is exact if it ceases to be a frame upon the removal of any one element.
Orthonormal bases are exact frames, but it can be shown that the union of
two orthonormal bases is a frame that is not exact. Several less elementary
examples are given in Example 1.9.

Definition/Proposition 1.8 ([41). Let Ign} be an exact frame in a separa-
ble Hilbert space H. Then the frame ig,,j and the dual frame IS-gn, are
biorthonornial, i.e.,

(",S ,g,) = b".,

where 6,, = 1 if m = n. and zero otherwise.

The point of this definition/proposition is that one can, in certain cases,
explicitly construct the sequence orthonormal to {gn }, that is the dual frame
{S- 1 g, 1, by methods other than an involved analysis of the inverse frame op-
erator S'. For certain collections of exponentials this can be accomplished
by using Lagrange interpolation theory and function theory. This is done in
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the next example. For convenience we let Et,, = e- 2
,it, Y, rtL E Z, where -y is

in[--, -L or in 91, depending on the context.

Example 1.9.

1) (Kadec-Levinson) If It,' satisfies

T
It,, - nlT ! L < -

4
then 'Et., is an exact frame for L2 [--, I_ 1 with dual frame hi, -

S-1Et,} given by

hv (t) = r, t) )
rl(tl)(t - t. }

where

r(t) = It -t,) n: (I- t I-t."

See [20, 15, 12].
2) It can be shown I 10, Section 5.3] that any finite modification of an exact

frame of exponentials is also an exact frame-i.e., replacing any finite
number of exponentials with exponentials at other points not already
contained in the collection also produces an exact frame.

We now apply these ideas to obtain the Yao-Thomas irregular sampling
theorem 119], which is the first expansion below, and a dual result.

Theorem 1.10. Assume ft,, satisfies the Kadec-Levinson condition

T
ltn - nTl t<L<- 4

Then

V f E PWV2, f(t) = E f(tn)rn(t)

and

f.'E PWo), f(t) = (fj,,t)dý (t - tn)

n

where {r,, is as defined above. Both series converge uniformly to f on 9R as

well as in L2 (91).
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Proof. By the first assertion of Example 1.9 and the reconstruction formulas
we have

VfE PW'2, f(y) q"--(f, Et)( h"(y)

and

V f E PW , =f, h")i• Et' ,,).
n

Applying the inversion formula to both expansions and the Parseval relation
to the coefficients in the second, we obtain the L2 (9•j convergent sums of
the theorem. The uniform convergence follows as in [19] or by using an
advanced calculus argument. U

Remark 1.11.

1) The first expansion in the previous theorem is the Yao-Thomas irreg-
ular sampling formula [19]. Yao and Thomas derived their sampling
formula using the Lagrange interpolation work of Levinson [15, Chap-
ter 4] and Levin [14, p. 198], providing an interpretation of it in terms of
engineering considerations. However, the second expansion cannot be
obtained directly from interpolation considerations and hence appears
to be new.

2) Both of the expansions above can be produced using the idea of a Riesz

basis of exponentials, as exact frames are Riesz bases and conversely.
This approach is described in [10] (see also [20]).

3) The Kadec-Levinson condition and the other examples given above are
restrictive and, as such, we seek sampling formulas for a wider class
of sampling lattices ýt,,}. So far we have employed orthonormal bases
and Riesz bases (exact frames) of exponentials. By a basis we mean a
collection in a Banach space by which every element of the space can be
written uniquely as a (possibly infinite) linear combination of elements
from the collection. One could ask whether it is possible to obtain sam-

pling formulas employing bases of exponentials that are not Riesz bases
or orthonormal bases. According to Young [20, p. 197], no example has
yet been found of a basis of exponentials for L2

1--1 , 2•- that is not a
Riesz basis. There are, however, examples of collections of exponentials

which are complete and minimal but which are not known to be bases
of exponentials [20, p. 126]. By minimal we mean a collection in which
each element is not contained in the closed span of the other elements
of the collection. A basis is necessarily minimal and complete but a
minimal, complete set need not be a basis [10, Section 4.2]. Sampling
formulas for these collections can be produced using Gram-Schmidt
orthogonalization. This is discussed in [10, Section 4.2].
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4) The expansions for f given in the proof can be multiplied by func-
tions 9 E CO(9t) with supps C [--L, -LI and with (-y) = I for all
y E f-0,01, as described in Remark 1.6 (3). Upon inversion this
gives (s * r,)(t) and s(t - t,), respectively, in the expansions of the
previous theorem.

2. Modern sampling theory using frames

To take advantage of the full power of frames, we drop the requirement
in the previous theorem that the frame be exact. Doing so creates two
obstacles. The first is whether there are any sequences which generate
frames of exponentials for L2 [_- , -L I, T > 0, which are not exact. The
second relates to the analysis of the inverse frame operator S- 1. In the
previous theorem, we used the biorthonormality relation described in the
proposition. This relation is not true if the frame is not exact. Hence we
must find a realization of the inverse frame operator that is both useful and
applies to frames which are not necessarily exact.

To answer the first question we describe the work of Duffin and Scha-
effer and the work of Jaffard on this topic.

Definition 2.1. A sequence {t1,, is uniformly discrete if there exists a constant
d such that

V n. jk rn, it, - tm( > d > 0.

A sequence It, , is uniformly dense if it is uniformly discrete and there
exist constants A, L > 0 such that

VnEZ, t.--1<L.
A

The constant A is called the uniform density for such sequences.

Theorem 2.2 ([41). If (t,, ý has uniform density A > 0, then 1E,,I is a frame
for L2 (-_2,01 where 0 < 20 < A and where Et,, = e-2ý7ily, rt E Z.

Theorem 2.3 ([111). The sequence {tt,} generates a frame of exponentials
for L2 (I) where I is an interval if and only if it can be written as the finite union
of uniformly discrete subsequences at least one of which is uniformly dense.
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Remark 2.4.

1) While not explicitly indicated in Jaffard's theorem, there is a relation-
ship between the length of I and the uniform density of all uniformly
dense subsequences of [t, } [11].

2) The completeness radius of a sequence [tv,,' is the supremum over all
non-negative real numbers 0 such that {Et.1} is complete in L2 [-0), 01.
This concept has a long history as the reader can investigate in [2, 13,
15, 16, 17]. The result of Jaffard above arose in his investigation of the
concept of the frame radius, that is the supremum over all non-negative
real numbers 0 such that fEI,• is a frame in L2 [--Q_(, 0_1.

3) The Duffin-Schaeffer and Jaffard theorems give the answer to the first
question asked above. If we choose a sequence {t,, that is the union
of a uniformly dense subsequence with a uniform density A > 2M,
and a finite number of uniformly discrete subsequences, then Et, I is
a frame for L2 [-_, 0]. This gives a sufficiently rich class of sequences
for us to investigate the existence of an irregular sampling algorithm
employing them.

4) Uniformly discrete sequences generate upper frame bounds for sets
of exponentials. Uniformly dense sequences generate upper frame
bounds, as they are uniformly discrete, but also lower frame bounds.
For the frame ]Et,,} mentioned in the previous remark, explicit esti-
mates for the upper frame bound always exists. Using the work of
Plancherel and P61ya [20, pp. 93-98] one can show [10, Section 4.31 that
for any uniformly discrete set [t,, [, the upper frame bound B for the set
of exponentials ,Et, in L2 [-0, 0] exists and satisfies

7t2 0d 2

where d > 0 is the minimum separation between sequence points It, [.
If It. [ is the union of a finite number of uniformly discrete subsequences
[-, [t. [ ,.• [tk[, then the upper frame bound for the exponentials
[Et,,}in L2 [-0,Clhisthesum B, +B 2 +...+BkwhereBl .... Bk satisfy
an estimate of the form given above for each of the uniformly discrete
subsequences t I [ [ 2 I . . .t

Uniformly dense sequences [t,, [impose lower frame bounds on
the corresponding set of exponentials {Et,,}' as well as upper frame
bounds. (Recall that uniformly dense sequences are also uniformly
discrete.) The lower frame bounds are also additive in the case that
the sequence [t,[ is composed of a finite number of uniformly dense
subsequences. However, the lower frame bound is highly dependent
on the distribution of the points and the density of the uniformly dense
set. No simple relationship is known for the lower frame bound of
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a uniformly dense set, as is the case for the upper frame bound for a
uniformly discrete set. However, in certain useful cases explicit lower
bounds can be given, as will be described latter (see Remark 3.3 (3)).

5) Note that in the definition of a uniformly dense set, the value of L
could be any positive number. As such, it is possible to have large
gaps in the sampling lattice-i.e., places where the distance between
consecutive lattice points {t,,} is large-by taking the value of L large
enough. This is an advantage of the frame approach as compared
to other approaches to irregular sampling (see the work of Karlheinz
Grochenig 17) in this volume).

To deal with the second problem associated with applying non-exact
frames of exponentials to sampling problems-the problem of analyzing the
inverse frame operator-we need the following fact about the frame oper-
ator. This proposition represents the Neumann expansion for the inverse
frame operator.

Proposition 2.5 (14, 31). If C_,, H, a separable Hilbert space, is a frame
with frame bounds A <_ B, then

Vhe H, S-(lN)- T (h).
k 0

where
25 3--Aý! - • .. < 1.

A H B A H B

Lemma 2.6. Let , -> 0 for which 0 < 0 • . Let it,, generate a frame of
exponentials ,Et,, for L2[-A, TT. Then

V w),fWS- E, d a(t - t,,J

where the series converges uniformly on ifl to f and in L2(11j), and where
the coefficients can be approximated by (infinite) linear combinations of the
sample values by taking truncations of the Neumann series for S` given by

c (f, 'f (I

2
A~ ~ t4~\ 4

k 0 T

Proof. Applying the appropriate reconstruction formula to the frame of
exponentials 1Et, ý we have

Vf E PW0 , f(y)
tl
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The first conclusion follows by applying the inversion formula to this, while

the uniform convergence follows by either an advanced calculus argument or

as in [19]. The second conclusion is an application of the previous proposition
and the fact that S- 1 is self-adjoint. I

The lemma appears to have nothing to do with sampling as the sample

values do not appear in the expansion given above. However, when we

analyze the coefficients Lc,', by truncating the coefficient expansions, we see
that the sample values of f appear. This produces the following algorithm.

Algorithm 2.7. We obtain an irregular sampling algorithm by truncating the
Neumann expansion for the coefficients at various places. For example, if

we take the k = 0 term only, we have

2
cl. - (t,Et)•

A f3

2

A f(t 1 ).

Note that if t,, rnT, Ti Z Z, then A = B = and so c,j Tf (nT),
as we would expect from the Shannon sampling theorem (Theorem 1.5). In

fact, if we truncate after any value of k for tj = nT, n E Z, with A - B
then the approximation to the coefficients is exactly , fit," ) fJf 'T ), so
we can conclude that c, = lf(nI) in this case.

If we keep only the k 0 and k -1 terms, we have

Aif

A , B A Ti

17

Again, if t, = n1, n Z Z, then A = B = , and, since Id. Ct, - t,,,) = T.

in this case, we have

c, •. 2Tf(tiT) -Tf(TiT)- Tf(TiT)

as we claimed above.

Remark 2.8.

1) As we take larger and larger values of k, we observe that the computa-

tion of the approximations to the coefficients falls into a pattern that is

suitable for programming on a computer.
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2) We can obtain versions of this algorithm with sampling kernels hav-
ing more rapid decay than da by multiplying both sides of the ex-

pansion in the proof of Lemma 2.6 by a function s e CC (.fl) with
supp 9 C [--L, -L] and with (-y) = 1 for all y E [-Qf, 01, as described
in Remark 1.6 (3).

3) We have truncation error estimates for both the coefficient expansions
and the sampling expansion. See [10, Sections 4.3].

4) One could also consider using the other reconstruction formula in the
proof of Lemma 2.6, as the two reconstruction formulas produced two
different sampling formulas when we assumed the Kadec-Levinson
condition (Theorem 1.10). When using the Neumann expansion, the
two reconstruction formulas do in fact produce the same sampling
formula. This can be shown bv an induction argument. See [10, Theo-
rem 4.3.1].

5) The sampling theory presented above can be reproduced using Ga-
bor frames (also called Weyl-Heisenberg, or weighted Fourier, frames).
Gabor frames are frames for the separable Hilbert space I 2 9(.N com-
posed of elements of the form 'C 2

7Cim'nbYcy - rn 1.C,,.. , where a, b
are real numbers such that ab 1 and a 12(K 1 If a, b and cl
satisfy certain additional assumptions, then the collection above will
be a frame for [2 (2f*) (see (9]). As indicated in [I arId I10, Chapters
2 and 3], one can generalize this construction to allow irregular se-
quences jt,,,.1 to take the place of the regular lattice nb. The central
ingredient needed to accomplish this is that c

2
61 , II be a frame of

exponentials for L2 -() -, 0. The Shannon theorem, the Yao-
Thomas theorem and its dual, and the irregular sampling algorithm
can all be reproduced using Gabor frames. The chief advantage of this
appproach is that while the coefficients c,, in the irregular sampling
algorithm above contain the slowly decaying factors d -(t,, - t,"), the
coefficients in the Gabor frame construction can have more rapidly de-
caying factors s(t,, - t,, ) where s is a function of the type mentioned
in (2) above with the additional assumption that s _- 0 on I - 21,

This allows for more rapid convergence of the coefficient expansions
and hence better numerical performance.

3. Application

As an application of these ideas, we prove the following theorem of Gabardo
[6] and Walker [18] in all except the extreme case. As a bonus, we obtain a
sampling theorem for entire functions of exponential type 0.

Theorem 3.1 (Gabardo-Walker). Let f e L2 (91) with suppf F
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02 > 0. Assume f(t,) = 0 V n E Z where t1,t is a sequence of real numbers
satisfying

I) tn < tf•;

2) lim,,- t oo and lira0,,. t,, = ;
3) sup,,. t,• 1t - t,,i = B < oo.

If 2DB <_ I, then f vanishes identically.

Proof (G-W). Iff ft 0, then Bernstein's inequality [20, pp. 84, 86-87] gives

!r'1ý2 < 2 D,'O l f' 2 .

On the other hand, by Wirtinger's inequality [8, p. 184], [5, p. 471,

f(, t It2 t t 2 .[t d.t

B t

K--- - C ft 0 2 dt.

since f(t , 0 '; rn. Hience

'f ft '2dCt Y ft t (i

t2 dt . (it

It-

Combining these two inequalities, we have

f (t ir dt - f-- ( it

"82 ~(~ {Mfltl 2 (t.

If 2.OB < 1, this last series of inequalities is impossible I lence, 0. I

Alternate proof (For 20B • I only). Let 0)1 - 0 such that • ,
1" We show that the sequence t,, contains a subsequence t,, that

generates a frame of exponentials for I r.), 01i,1 and hence for [.2i- (2,0

as well.
To begin, pick E > 0 small enough so that B < - - ick symmetric

intervals around 20"1 1 V n. of length b-d-T- - 6 > B with 6 :- 0 small. Since

sup(t,1 - t, I B < -2-- -

nr iZ. 2 01i i C
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each interval centered around a multiple of 2 must contain at least one
t,. Discard all elements except one of the sequence lt,2 in each symmetric
interval, and discard all elements that fall between the intervals. Label
the element remaining in the interval centered at by t. Then the
subsequence t,, ,of {t, } is a uniformly dense sequence with uniform density
2f 21 + c--i.e., ft,,, 1 satisfies It,,• - t,..... I >, 6 > 0 for k ýý m and

0, 1 + C. 20= 1 C 1

Hence, by the theorem of Duffin and Schaeffer (Theorem 2.2), the collection
of exponentials itrý t is a frame for L 

2f-_f 1, 01 ]. So, by applying Algorithm
2.7, we obtain a sampling expansion for entire functions of exponential type
0 employing the sample values f(tk );. a

Counterexample 3.2. We show by example that if we let 20B 1 1, then there
exist sequences that do not contain a subsequence which generates a frame
of exponentials. Consider the sequcnce defined by t,, • for n *.: C and

+ for n. , 0 ovd

I3*•7•• fo ,0ee

for 0. Consider the following observations:

I Observe that the positively indexed terms are clustered together in
pairs - an oddly indexed term and its following e, enly indexed term.
The two elements of each pair get infinitely close together as n - x as
they differ by 2i, where n is even. Hence if this sequence does contain
a uniformly dense subsequence, a subsequence which, by definition,
is also uniformly discrete, then only a finite number of terms of this
subsequence can be taken from both elements of these pairs. So hr.
n • 0 large enough, then at most one element can come from each of
these pairs in any uniformly dense subsequence.

2) Note that if a subsequence is uniformly dense, the subsequence can
grow no faster or slower than " since, from the defintion ot a uniformly

A'
dense sequence,

n.- It,, - .7

A <A

for some I .- 0.
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We claim that we can not select a uniformly dense subsequence from tt,

as we can not find a suitable density for this subsequence that satisfies the
growth condition (2). This is because any subsequence that obeys observa-
tion (1) will grow faster than the sequence {, } for e >_0 by virtue of the

1 factor added to the terms and by the unboundedness of the sequence
... However, any uniformly dense subsequence will grow slower

than for c > 0since t -t -t, B j for n even. I

Remark 3.3.

1) In the alternate proof for 20B < 1, we selected a subsequence ýtJ, of
t,, such that 't,,, , generated a frame of exponentials for L2 [- 01,011.

By applying the algorithm, we obtain formulas enabling us to recon-

struct the function f from its sample values at the points Jt 1, ,. (The
remaining points of the sequence [t, 1 not in the subsequence 't,,,• can
be discarded, or, if they can be partitioned into a finite number of uni-
formlv discrete subsequences, they can be incorporated into the frame
of exponentials generated by 't,, .) So we have obtained a represen-
tation theorem corresponding to the uniqueness theorem in the case
20B , 1.

2) Note also that the work of Jaffard and Duffin and Schaeffer allow us
to produce frames of exponentials, and hence uniqueness and repre-
sentation theorems, for sequences which do not satisfy the restriction
20B 1. In particular, since in the definition of uniformly dense
sequences L can be any positive number, we can generate uniformly
dense sequences with large gaps-i.e., for which the distance between
certain consecutive points is larger than 1 Hence we can extend
the Gabardo-Walker Theorem to irregular sampling lattices that do not

satisty all of the restricuons of the hypotheses of that theorem.

3) It can be shown [ 10, Corollary 4.4.41 that the lower frame bound for the
frame of exponentials in 1 -f~,) i0 generated in the alternate proof

is ,I-, (See also Remark 2.4 (4).)
io

4) For another approach to irregular sampling, see the paper by Karlheinz
Gr6chenig [71 in this volume, The method described there, and in the
joint papers with Hfans Feichtinger listed in the references of that paper,
applies in a wide variety of function spaces on various groups. This is
to be contrasted with the method described here which applies only in
I 2 , U I.
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4. Notation

The Fourier transform f of f - L1 (9R) is defined as

y)= f(tle- 27it dt,

where "f" designates integration over the real line 91; f is defined on ( = N )
and fv is the inverse Fourier transform of f. The Fourier transform is defined
on L2 (91), and, for fixed () > 0,

PW) =f E L2 (9q) :suppf C [-f,]01

where supp f is the support of f. Functions that are in the space PWj2 are
called 0-bandlimited.

Besides the L1 (91)-spaces, we deal with the space C• (9i) of infinitely
differentiable functions and its subspace Cc (91) whose elements have com-
pact support.

"5" designates summation over the whole discrete group in question,
e.g., over Z, where Z is the group of integers. The function 1 s is the character-
istic function of S C_ 9R, Si is the Lebesgue measure of S, and 11• I _- .
The function 6,.... is defined as 0 if rn -A n, and as I if m = n. The dilation
f,\ of the function f is fN(t) Af(At). Finally, the exponential function F,, is

2 (t) = t
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i Kolmogorov's fundamental paper on stationary sequences (1941) played
a major role in important problems dealing with stochastic processes. His
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in harmonic analysis. The topics are weighted Fourier transform norm
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1. Introduction

Fifty years ago, in 1941, Kolmogorov published his monumental paper, Sta-
tionary sequences in Hilbert space [39]. As Cram&r pointed out [17, p. 5321,

"The fundamental importance of this work by Kolmogorov lies in
the fact that he showed how the abstract theory of Hilbert space (as
well, of course, as of other types of spaces) could be applied to the
theory of random variables and stochastic processes."

Moreover, in [39] and its sequel Interpolation and extrapolation of stationary
random sequences (1941), Kolmogorov introduced the basic concepts of
deterministic and purely nondeterministic stationary sequences, and posed
and solved the primary problems in

A: Prediction theory
B: Spectral theory of minimal stationary sequences.

The setting for these two areas is based on the

C. Wiener-Khinchin theorem.

From the point of view of stationarity, the wonderful and influential ideas
formulated in [391 are now standard fare in probability theory, and to some
extent they have been played-out, especially in the (multivariate) discrete
semi-infinite prediction theoretic case, e.g., [43], [47], [53, Volume I1l, in-
cluding the updates by Masani (pp. 276-306), Salehi (pp. 307-338), Muhly
(pp. 339-370), and Kallianpur (pp. 402-424)], cf. [201. There is still a great
deal to be done in the case of stationary fields, e.g., [15], [37], and Section 4.2.

Our goal in Sections 3-5 is to describe recent results from three topics of
modern harmonic analysis which are in the intellectual lineage of the above
items A, B, and C, respectively. A will lead to the topic of weighted Fourier
transform norm inequalities, B to a topic in wavelet and coherent-states
theory, and C to multidimensional Wiener-Plancherel theorems.

Section 2 is devoted to a commentary on parts of [39], and we have re-
sisted the temptation to record much subsequent related material on stochas-
tic processes and prediction theory. We have lectured on the relation between
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prediction theory and weighted Fourier transform norm inequalities since
the early 1980's: and most of the material in Section 3 is taken from those
lectures. Section 4 records some of the preliminary ideas being used in our
current work on stationary frames. Section 5 rounds out our view of the
type of harmonic analysis affected by [39]; the format in Section 5 is just to
state our recent published results [6).

Besides the usual notation in analysis as found in the books by
Hormander [35], Schwartz [49], and Stein and Weiss [50], we shall use the
conventions and notation described at the end of the paper.

2. Kolmogorov and stationary sequences

2.1. The Wiener-Khinchin theorem

Definition 2.1. A sequence {x(n) : n E Z} in a complex Hilbert space H is
stationary if the inner product

R(n) = R.,(rn) = (x(n + k),x(k)), rT Z,

is independent of k. R, is the autocorrelation of x. Twostationary sequences
{x(n0)l and gy(n) are stationarily correlated if the inner product,

R xy (n•) = (x (n + k), gj (k)), Z.'t

is independent of k. Clearly,

Vrt C Z, R,. (n•) =• (-n).

Theorem 2.2 (Wiener-Khinchin).

1) Given a stationary sequence x(rn)l C H, there is ýi E M, (T) for which
Rx x = ý.v. . is the power spectrum of x, cf. Definition 5.9.

2) Given ýi E MA('T), there is a stationary sequence {x/n.)} for which
Rxx= ýLv.

Remark 2.3.

1) Item 1 of Theorem 2.2 is immediate since R, x is positive definite, thereby
allowing us to apply Herglotz's theorem.

2) For Item 2 of Theorem 2.2, we first note that •v = R is positive definite.
For the case of stationary stochastic processes x, e.g., [45], the problem
is to construct x for which R, = R. This was done by Khinchin (1934)
on 9R, by Wold (1938) on Z, and in a more general setting on both
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91 and Z by Cramer (1940) [16, p. 2 24]; the method is standard, e.g.,
[20, pp.62-63 and pp. 72-731, [46, pp. 221-2221, and the constructed
process is Gaussian. In fact, in this Gaussian case there is a natural
bijection between Mt (T) (or Mb+ (9I)) and stationary Gaussian pro-
cesses subjected to a mild technical constraint. The argument in [20]
uses the Kolmogorov extension theorem found in his classical book
(1933). This should be compared with Kolmogorov's abstract "Hermi-
tian extension" method [39, Lemma 1 and Lemma 2], which he used
to prove Item 2 of Theorem 2.2 and its generalization for stationarily
correlated sequences, viz., [39, Theorems 4,5, and 6]. A footnote in [16,
p. 221] as well as a reference in [39] indicate that both Cramer and Kol-
mogorov were aware of the other's similar results, which were proved
by different methods and resulted in more generality in [39].

3) Wiener's contribution (1930) to the Wiener-Khinchin theorem was for-
mulated in nonprobabilistic terms, cf. [271; and lead to the constructive
Wiener-Wintner theorem (1939) on 9N. Bass and Bertrandias made sig-
nificant contributions to this result; and recently my student, R. Kerby,
and I have proven the Wiener-Wintner theorem in 9 jd. One basic con-
struction is given in [2] and two others, which are quite ingenious, are
contained in [38].

Our result is

Theorem 2.4 (Wiener-Wintner). Given ýt c Mb, (N"d), there is a con-

structible function x fE L k,, (9V.i) such that, for all t,

IR(t) lim x(t + i,)x(u)du
1 - B(0, T)I 1 d

and

R(t) = lv(t).

The ordinary point function R in (2.1) and its probabilistic counter-
part Rx, defined by a stationary stochastic process x(t,o), are essentially
equivalent in correlation ergodic processes, e.g., [45]; the role of Theorem 2.4
in spectral estimation is discussed in [2], [5, Section 5], and Section 5.4 of
this paper. Given x E L1,),( 91d) and R defined by (2.1); the converse of
Theorem 2.4 is immediate by Bochner's theorem.

2.2. The fundamental isometry and structure theorems

In his work of 1941, as well as in an earlier Comptes Rendus note (1939),
Kolmogorov solved the problem of predicting the future from the whole past,
cf. Item 1 of Remark 2.10. The following elementary observation plays a role



{ 121 Stationaryframnes and spectral estimation }

in this solution by transferring a large class of statistical prediction problems
into problems of trigonometric approximation in weighted Lebesgue spaces.

Theorem 2.5. Given a stationary sequence {x(n)} C H, with power spectrum
i.. Let H(x) = 9ppx(n)J}. The mapping,

z: LP(,) -- H W,

defined linearly on sp{e 2
niny} by Z(e 2

7hiY) y x(rt), extends to a linear
isometric isomorphism, cf. [39, Lemma 4 and its proof in terms of the spectral
representation of the shift operator U].

Proof. Since p. is a bounded Radon measure we have that e2 •"'lv E L2 (,.).
For finite sums p(-y) = c_ e2

7iny c L2 (,T) and x = Y cnx(rl) E H(x), we
compute

-ce 2 ,Tiny 2
JJ12,& , IL c 1e2""n ýj v (in - TI)

in,n

= T c,,cR(m - n)= > c,,,F,,(x(M.- ri + k),x(k))
tT-n nnil,n

mb In'tY Cj c1 ,"(x(in),x(n)) = ' ( Y c,(n), T cT1 x(a-)~
7n ,I

zvK- c'x(n,)ý = IX1
and so Z is an isometry on sp~e27m y

Next, we see that sp{e 2nhiiY• = Lpfl. In fact, for a given c > 0
and f E L2 j(), there is a continuous function g on T and a trigonometric
polynomial p such that

C

11f - 9112, < c/2 and [-g - pI<I--
2 1 •11 '

Consequently,

11f - N2,," <-- 4 1ý l[- PNI2..ý
2 2

< - + -c d1' O(y)) C.2 + 22I1p.i, .l ia(v)

Thus, by general considerations, Z is a linear isometry from L2(.T) onto a
dense subspace of H(x). In particular, Z is injective. Finally, taking Yl E H(x)
and using the Cauchy sequences, 1,iin C H(x) and ýZ-y•i1 c L 2(,T), where
limrn = y and lim Z- 1y, = f, it is easy to check that Zf = 9; and so Z is a
surjection onto H(x). U
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The verification in the proof of Theorem 2.5, that sppe2niny 1 2 (-

also works for stationary functions,

x : 9-R* H, (2.2)

i.e., functions (2.2) for which (x(t + s), x~s)) is independent of s. In fact, we
take g C C,(9Id), with supp g contained in a cube Q, and choose plQ instead
of p. Another elementary proof that

9-PI e27 -y : t C Ld} 2 
(9 td),

where the power spectrum ý., = ýi is an element of Mb (Ind), utilizes the
Hahn-Banach theorem instead of the Weierstrass approximation theorem.
In this case, the argument is completed by the uniqueness theorem for the
Fourier transform.

The structure of bounded measures on 9i ( or T) is given by

Theorem 2.6. Each P G Mb(
9
() can be written in the form

P = fac + I-s = fac + Psc + •d,

where fa,- C L1 (JI), ýi, is the singular part of ýt, p. C M1,(l) is designated
the continuous singular part of ýt, and ýl.' = T-dvyb c MO*9), where

" Idi < o. Further,

i = F',

the distributional derivative of a function of bounded variation (BV), and

F = Fac + Fsc + Y3 dH'y,

where F,, E BV is locally absolutely continuous, F,, E BV is a continuous
function whose ordinary derivative vanishes a.e., and H, is the Heaviside
function with jump at y. Finally,

F' = f., F.. . = a,, (., dH) = dyb,

under distributional differentiation.

2.3. The Wold decomposition and deterministic sequences

Definition 2.7.

1) Given a nonzero stationary sequence (x(n)fl g H. Besides the notation

H-(x) = pfx(nx = () H(x, oo),
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defined in Theorem 2.5 and which does not depend on stationarity, we
now define the closed subspaces,

Vn., H(x, r) = ýp{x(k) : k <- rn

and

H(x, -oo) = nH(x,n.t).

Clearly,

Vrn H(x,-oo) C H1(x,n) C H(x, oo).

"* ýx(rn)ý is deterministic if

H(x,-oo) = H(x, oo];

"* {×x(n•) is nondeterministic if

H[(x,-oo) • H(x, 0).

x [x(n) is purely nondeterministic if

H(x,-oo) =,, ý ( H (x, oo) )

2) In 1941, Kolmogorov was aware of the Wold decomposition (1938),
whereas Wiener, in his independent development of prediction theory
was not, e.g., 144, p. 193]. Because of the role of Wold's result in 1391,
we state the Wold decomposition, which, notwithstanding its origins,
is a theorem about operators on a Hilbert space and nondeterministic
sequences from Kolmogorov's point of view.

Let x(n), be a nondeterministic stationary sequence with shift
operator U = U. on H(x,oo) defined by U(x(r)) = x(rn t 1) on x(rt)
Then there are stationary sequences ,u(rn8 and !v(n8,, and a unique
decomposition,

Vn, X(n) = u(n.) + v(On),

such that

a) ,u(n), is purely nondeterministic and ,(n)l is deterministic,
b) Vr, H(u,n) J H(v, n) C H(x,n),
c) H(u,oo) I- H(v,oo),
d) Vn, v(n) is the projection of ýx(n.)ý onto H(x, -oo).
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3) Given the hypotheses of the Wold decomposition in Item 2. Since
(x(nr)} is nondeterministic, H(x,O) j4 H(x, 1). There is an essen-
tially unique unit vector z(1) E H(x, 1) such that z(i) .L H(x,0) and
p{z( I], H(x, O)} = H(x, 1). Noting that U extends to a unitary operator

on H(x, oo) and that U- 1 is the adjoint operator, we define

Vkc Z, z(k) = Uk-l(z(l)).

By U's definition it is easy to check that [z(k)} is orthonormal and that

VkEZ, z(k) I H(x,k- 1). (2.3)

Writing the Fourier expansion of x( 1) with respect to ýz(kjý we compute

x(l) -ckz(l -k)+v(l), (2.4)
k C

noting that ck =(x(1),z(I - k)) = 0 for k < 0by (2.3). We have Ick
t2 (Z) and can verify that 0,(1) E H(x,-oo). Applying the operator
U`-1 to (2.4) we have

Vn, x(rn) = ckz(k) +v(n),
k -- xN

and, in particular, the purely nondeterministic sequence Ji(nt)' is a
particular moving average, viz.,

Vri, WT(n = c...Kz(k). (2.5)
k -

The Wold decomposition is equivalent to the power spectral decom-
position of .i, into its absolutely continuous and singular parts. For ex-
ample, if log f,,, fE L'(i), where 4, = f(,,. + jt, cf. Theorem 2.6, then
{1(n)j corresponds to f,,, and {v(n)! corresponds to pi,, cf. Theorem 2.8.
If log f,,, V L' (J), where t = f,,, 4 pi, then 'v(n)Y corresponds to all of LL,.
This material is well-traveled and there are many points of view, e.g., [20,
Chapter 41, [27, pp. 259-261], [42, pp. 62ff], [46, pp. 755-759]. We shall exposit
Kolmogorov's original formulation from [39, Sections 8-10], which he points
out is "more unfamiliar (than Sections 1-7) and seems to be really new."
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2.4. Spectral characterizations of deterministic sequences

Theorem 2.8. [39, Theorem 22] Given a stationary sequence {x(rn)} I_ H
with power spectrum p. fx(n)} is purely nondeterministic if and only if
p. = f,,,. E L1 (T) and

logf., E L1(T).

(In particular, .i> 0 a.e. and supp = .

One of the features of such a result is that, when we know the autocor-
relation of a process (which is often experimentally available), we can char-
acterize t..e prediction theoretic properties of the underlying process. There
are analegous results for related filter problems, e.g., [3, Theorem IV.2.1 ] and
the thesis [551 of my student, G. Yang.

Theorem 2.9. [39, Theorem 23] Given a stationary sequence x(n)ý - H with
power spectrum ti = f.• + p1.

1) If f,,, = 0 on a set of positive Lebesgue measure then ,x(n)ý is deter-
ministic.

2) If f,,, > Oa.e. and log f,,, 4 L'(T) then ýx(n)j is deterministic.
3) If f(,, > Oa.e. and log f,,, E L'('I) then x(n), is nondeterministic,

cf. Item 2.

Remark 2.10.

1) Using the definition of a deterministic stationary sequence as well as
the isometric isomorphism in Theorem 2.5, we can rewrite Theorem 2.9
in terms of trigonometric approximation as follows:

Given p = f,,, + p G M I (T.

pp{e2Tiky : k _< 0 = Lt) (2.6)

if and only if

log f0 , V L1 M). (2.7)

Kolmogorov's proof was a consequence of the Szeg6 alternative, and
there is an elementary presentation of this proof in [1, pp. 261-263].
The completeness statement (2.6) is the analytic formulation of the
prediction theoretic statement, concerning prediction of the future from
the whole past, which we made prior to Theorem 2.5. The result can
first be proved for li = f(,,, and the "reduction" from arbitrary ý- to f,,
uses the F and M. Riesz Theorem.
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The analogous result for 4 E MbE 0i() and L/2 () is due to Krein
(1945). In this case, "k <_ 0" is replaced by "t <_ 0" in (2.6), "TX" is
replaced by "91", and (2.7) is replaced by the condition,

JI 1log f0 •(y)io f.- I dy = oo.

2) The relation of Theorem 2.9 (as written in Item 1) to Wiener's Tauberian
theorem, Beurling's spectral analysis, the Denjoy-Carleman theorem
on quasi-analytic classes, and Harry Pollard's solution (1955) of the
Bernstein approximation problem is discussed in [4]. Pollard's basic
lemma on entire functions of exponential type was used by (his student)
de Branges to prove uniqueness criteria in the spirit of work by the
Rieszes, Levinson, and Beurling-Malliavin [4]. A deep, novel, and
applicable distributional analysis of this latter body of work is due to
my student, J.-P. Gabardo [25, 22, 24].

2.5. Spectral properties of minimal sequences

The final notion, which we wish to discuss and that was introduced by
Kolmogorov in [391, is the following:

Definition 2.11.

1) Given a sequence ýx(n), ( H and define the closed subspace,

H (x,n.) - ,• .1,x (k) : k -4 ti!.

x(nj), is minimal if

Vn1, x(rn) tj H(x,Ti). (2.8)

In the case of stochastic processes, minimal sequences are "those
for which the random function at any time (t = ri) is outside the closed
subspace span, d by the past and future functions of the process" [43,
pp. 141-1421.

2) If x(rt)! is a stationary sequence then either H(x, Ti) = 11(x, co) forall n
or H(x,n) (Z HI(x, oo) forall n. For example, suppose H(x, t) = ýix, 0o)
and m 34 n. If H(x,m) 5 H(x,oo) then

Vk #0 , (x(m),x(m + k)) = 0,

so that by stationarity,

Vk j 0, (x(n),x(m + k)) = 0. (2.9)
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By hypothesis, (2.9) implies that x(n) = 0, a contradiction, Thus, for
stationary sequences, the criterion (2.8) for minimality can be replaced
by the condition,

H-f(x,O) I H (x, oo). (2.10)

3) Minimality not only plays a natural role in prediction theory, but is an
essential aspect of K6the's theorem (1936) characterizing Riesz bases.
K6the's theorem and its role in irregular sampling constitute recent
results with my student, W. Heller [11].

Theorem 2.12. [39, Theorem 24] Given a stationary sequence x(n) I H,
with power spectrum Ai = f,. + ýt,. ýx(n)ý is minimal if and only if

(IC E

cf. the multivariate version -4 H1d in [43, Theorem 2.8], [47].

Theorem 2.12 has had important modifications (even in the case Z - H)
dye to Masani [43] and Rozanov [47j, e.g., Theorem 2.17; and these have
stimulated and affected our observations in Section 4 concerning topic B.

Definition 2.13.

1) Given a separable complex Hilbert space H. Two sequences lx(n)Y,
(n) H are biorthonornial if

Vr,nr, Cx(m),uy(t1)n - 5,....

2) Given a sequence ,x(n), C Vi-. An Hahn-Banach argument shows that
there is a slequence !14( n); . H so that ,x(n) , ,y(n)' are biorthonormal if
and only if ýxlrt)f is minimal. Furthermore, y(n)l is uniquely determined
if and only if :x() n is not only minimal in K- but also sp~x(rtl1 - It.

Using the fact stated in Item 2 of Definition 2.1 we can make the fol-

lowing definition.

Definition 2.14.

1) Given a minimal, complete sequence ýx(n)ý g H, and let {x ji)}, {j(n)ý
be biorthonormal. {x(n), is a Bessel sequence if the Bessel map,

B :H H 12(Z)

x ,



Benedetto 2}

is a well-defined linear map. x(n.) is a Hilbert sequence if

Výc(n)ý E_ l2 (Z), Ix, E H-1 such that
Vn, c(n) = (x, ,u(n)).

Clearly, a Bessel sequence is a Hilbert sequence if and only if the Bessel
map B is surjective.

2) If fx(rt)} is a Bessel sequence then, by the uniform boundedness prin-
ciple, there is a constant B > 0 such that

Vx • H, j (x,, Ij B2 BX x1 2 . (2.12)

Thus, the map B in (2.11) is not only well-defined and linear but also

continuous.

If [x(T,)Y ( H is a minimal, complete sequence, and :x(K v•i(n) I f-
are biorthonormal then it is not necessarily true that •ppy(n)} H; an old
example of Kaczmarz and Steinhaus (1935) provides a counterexample, e.g.,
[34, pp. 19-20]. On the other hand, Masani [43] and Rozanov [47] have used
Theorem 2.5 to observe the following lemma.

Lemma 2.15. Given a stationary, minimal, complete sequence x(n) fl
and let x(n) ,, 14(n), be biorthonormal. Then s-1•n. =.

Theorem 2.16. Given a stationary, minimal, complete sequence ix(n)i - ,
and let 'x(ri):, tj(ni be biorthonormal. Assume 1x(n): is both a Bessel
sequence and a ffilbert sequence. Then there are constants A, B1, 0 such that

Vx - H, Ab~xljl2 <_ Y" ixY(nr)l 2 - BjxH2. 2.13)

Conversely, if (2.13) holds, then ýx(r is both a Bessel sequence and a Hilbert
sequence.

Proof.

1) The second inequality of (2.13) is clear since ýx(n) , is a Bessel sequence,

e.g., (2.12).
To verify the first inequality of (2.13), first note that the Bessel

map B is injective by Lemma 2.15. Since {x(nt)j is a Hilbert sequence,
the Bessel map B is surjective, so that, by the open mapping theorem,
B 1 : 1.2 (Z) --_ H, is continuous. This yields the first inequality.

2) For the converse, the second inequality of (2.13) implies :x(T•), is a
Bessel sequence.
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Since Jx(nT)} is a Bessel sequence, the Bessel map B has a well-
defined continuous adjoint, B* : t2 (Z) - ý H. Clearly,

(y,B c) = (By, c) = Y-

(1jy, Tcn)- g(O

Thus, for any c E [2 (Z), B*c = -c(rt)j(rt) x E H; and, by
the biorthonormality, c(n) = (xy(rn)). Therefore, {x(rn)ý is also a
Hilbert sequence.

I
Condition (2.13) in Theorem 2.16 defines ly {( ( as a frame, cf. Section 4.

Theorem 2.17 ([471). Given a stationary, minimal, complete sequence
{x( n)V Cg H, with power spectrum . = faC.

1) {x(rT)} is a Bessel sequence if and only if -f E POi().
2) fx(n))} is a Hilbert sequence if and only if f,. G Lý (T).

Rozanov's Theorem 2.17 and Masani's related contributions utilize
Theorem 2.5. This result, and similar ones by these authors, were proved in
the multivariate case, Z --4 W, e.g., [53, Volume 111]. There are significant
problems in the multivariable case, Zd -4 H, cf. Section 4.2.

Remark 2.18. As we have mentioned, prediction theory leads to our for-
mulation of Section 3. At the end of Section 3 we shall discuss the role
of the uncertainty principle inequalities in the context of weighted Fourier
transform norm inequalities. With this in mind, we close this section with
an intriguing observation by Norbert Wiener [54, p. 9].

"The prediction of the future of a message is done by some sort of
operator on its past, whether this operator is realized by a scheme
of mathematical computation, or by a mechanical or electrical ap-
paratus. In this connection, we found that the ideal prediction
mechanisms which we had at first contemplated were beset by
two types of error, of a roughly antagonistic nature. While the
prediction apparatus which we at first designed could be made to
anticipate an extremely smooth curve to any desired degree of ap-
proximation, this refinement of behavior was always attained at the
cost of an increasing sensitivity. The better the apparatus was for
smooth waves, the more it would be set into oscillation by small de-
partures from smoothness, and the longer it would be before such
oscillation would die out. Thus the good prediction of a smooth
wave seems to require a more delicate and sensitive apparatus than
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the best possible prediction of a rough curve, and the choice of the
particular apparatus to be used in a specific case was dependent
on the statistical nature of the phenomenon to be predicted. This
interacting pair of types of error seemed to have something in com-
mon with the contrasting problems of the measure of position and
of momentum to be found in the Heisenberg quantum mechanics,
as described according to his Principle of Uncertainty."

3. Weighted Fourier transform norm inequalities

3.1. Prediction theory and weighted Hilbert transform norm inequalities

Kolmogorov's conception and characterization of deterministic sequences
lead to a new prediction problem formulated by Helson and Szego (1960)
[331. We shall describe this problem, its relation to the material in Section 2,
and the role of the Hilbert transform. In light of Theorem 2.5, we shall deal
with trigonometric approximation in L('T).

Notation 3.1. Given p = f,,, + ý.t c M j(T), we define the following sub-
spaces of L2 (T):

Tjo = spfe 2
Tiky: k _< 0,,

S= spte 27Tik -: k 11< ,

and

3" = sp{e 2
7yik : k > 11}

"JP" is for "past" and "T' is for "future."

The results about deterministic and minimal sequences from Theorems
2.8, 2.9, and 2.12 in Section 2 are the consequences of the following formulas
developed by Szego and Kolmogorov, respectively

Formulas 3.2.

inf I I, + p(y)12 dja(y)= exp ( logf0 .(y)dy); (3.1)
pE• TL

inf 1J +i p(v) + q(y)I 2dp(4y) f. ( y) -Y ' dy t  (3.2)
,EPE

Q E I LrJ

Remark 3.3. If log f, c L' (T) then the right side of (3.1) vanishes and so
1 E ';in fact, L2 (T). Similarly, if f L1 () then the right side of (3.2)
vanishes and so I E (TP U 37).



{ 131 Stationary frames and spectral estimation }

In the converse direction, these formulas show that "if fac is not too
small," i.e., if the right-sides of (3.1) and (3.2) are positive, "then the expo-
nentials possess a certain kind of independence" [33, p. 108]. Intuitively, this
means, for example, that T # jY in the case that the elements of T are lin-
early "independent" of F, i.e., the nondeterministic case. Geometrically, this
signifies that T and 3 are at a positive angle ca to each other in the sense that

p =_ cos oc (33)
-- sup{il(p, q)l:p ET,q E sand lIPl2,,, Ilql12,., < 1] < 1.

The definition (3.3) is the natural Hilbert space generalization of angle from
the Euclidean case, where the law of cosines is used to evaluate an angle ac
between two lines (subspaces) through the origin. Clearly, in this case, if
o( = 0 then the two lines are the same. It is in this spirit that we would have
the deterministic result, T = Y-, when oc = 0 in (3.3).

Helson and Szeg6 noted that the notion of independence defined by the
condition, p < 1, is stronger that the independence defined by Kolmogorov's
nondeterminism [33, p. 109], and discovered the following remarkable role
for the Hilbert transform in prediction theory when dealing with positive
angles between subspaces.

Theorem 3.4. 133, Theorem 2, pp. 129-130] Given p = f . E L l (T), and
define the conjugate functionp(y) -E.- N W [n) (sgn ni) e2•••Y for every

trigonometric polynomial -II- N 15[nI] 2ni 'Y. There is p c (0, 1) such that

Vp E TPand q E 7,

Re LP (y)e 2 ,iq(y)f(,, (y)dy < PIIP2,l qlI2,

if and only if there is C > 0 such that

Ilq2.,. C~lIPl2,p (3.4)

for all trigonometric polynomials p. Equivalently, T o and jý are at a pos-
itive angle in L2 (.T ) if and only if (3.4) holds for every real trigonometric
polynomial p.

Remark 3.5. If f is a trigonometric series, - an e2 '"n", with conjugate series
f, then

f +t= ao + 2 a.e 2niny

is a series of analytic type. Iff E L2 (T) then f E L2 (T') and f + if E H2(,).
The famous theorem of Marcel Riesz (1927) asserts

Vf E V'. IIfl, 11 t,< ClIfllt, (3.5)
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where p > 1, cf. (3.4). Kolmogorov (1925) proved the L1 (T)-version of (3.5):

3C > 0 such that Vf E L' (T) and VA > 0,

lIy : If(y)) > A}l <_ CA- 1 1J ifI1,

i.e., f is of weak Ll-type iff E L' (T). Note that the constant C in (3.6) is
independent of f.

Definition 3.6.

1) The Hilbert transform of f E L2 (91) is the conjugate function f defined
by the formula

(fiv(T) = -i(sgn-y)fV(-y).

2) Since sgny = 2H(y) - I (H - Heaviside function) and since the distri-
butional Fourier transform of -,tpv

f(t) pv (-) * f(t).

Thus, prediction problems are intimately related to weighted Hilbert
transform norm inequalities.

3.2. Ap-weights, the Hilbert transform,
and the fundamental theorem of calculus

Definition 3.7. For each f E Lt (9), the Hardy-Littlewood (1930) maximal
function Mf is defined as

Vt E 9%, (Mf)(t) = sup j I f(u)ldu,
tEl I

where I ranges over the nontrivial compact intervals containing t. The
extension to 91d was made and used by Wiener (1939) in work on the er-
godic theorem.
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Theorem 3.8.

1) Iff E L I(9q) then Mf is of weak L'-type, i.e., there is a constant C > 0
such that

Vf E Ll (9l) and V > 0(
A~t: {MNOt > }1i <_ CX,-111f 11.

Note that the constant C in (3.7) is independent of f.
2) If 1 < p <, oo and f c LU(N) then Mf E LP(9q), and there is a constant

C = Cp > 0 such that

Vf E LP(9i), IMfil, _ CpJfill,

(Hardy-Littlewood, 1930).

3) If f e L1 (91) then

lir I I f(u)du = f(t)a.e.

where for a given t, the measures of the compact intervals I tend to 0
(Lebesgue, 1910).

Remark 3.9. In Theorem 3.8, Item 3 is a corollary of Item 1. Item 3 is that
direction of the fundamental theorem of the calculus which asserts that

" 0J = Identity," (3.8)

where "D" is the differentiation operator and "f" is the integration operator;
and so Item I of Theorem 3.8 can be viewed as a quantitative version of (3.8).
Of course, we also know that

"J oD = Identity." (3.9)

More precisely, for compact intervals, F is absolutely continuous on fa, b] if
and only if

3f E L1 [a, bi such that Vt E [a, bl, F(t) - F(a) f f(u)du.

Definition 3.10. Given 1 < p < oo and a Borel measurable function v > 0 a.e.
v is an Ap-weight A.-weight, written v E Ap, if there is a constant C > 0
such that

VI (compact interval),

y fii]v(t)dt) j Jv(t)-1/(P-' dt)-1 •< C.
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For example, v(t) = Itj 0E A, if -I < p <p-.
The AP condition is precisely what is needed to prove a weighted

version of Item 2 of Theorem 3.8.

Theorem 3.11 (Muckenhoupt, 1972). Given 1 < p < oo and a Borel
measurable function v > 0a.e. There is a constant C > 0 such that

Vf E LVP(91), liM flip,, _< Cllfl!•,,•

if and only if

v E Ap.

The relation between the material of this subsection and Section 3.1 is
made by the following result.

Theorem 3.12 (Hunt, Muckenhoupt, Wheeden, 1973). Given 1 < p < 00
and a Borel measurable function v > 0 a.e. There is a constant C > 0 such that

Vf c L ý M ), 1Il4h1,, <1 c I1flht,,,

if and only if

v E Ap.

Besides the original papers, [261 provides an excellent treatment of The-
orems 3.11 and 3.12, as well as subsequent related developments concerning
A, and maximal and singular integral operators.

3.3. Ap-weights and weighted Fourier transform norm inequalities

We have seen how prediction theory leads to weighted Hilbert transform
norm inequalities and Ap weights, with an accompanying theme dealing
with the fundamental theorem of calculus.

The following result illustrates how Fourier transform inequalities
come into the picture.

Theorem 3.13. [10] Given 1 < p <, q <_ p' < oo and an even, non-negative,
Borel measurable function v, which is nondecreasing on (0, oo). There is a
constant C > 0 such that

Vf E C (9),

(310
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if and only if

_q A••
vp E A 1 .,

cf. [5, Section 2.2.2] for a d-dimensional version.

Remark 3.14.

1) Depending on v, the quantitative expression for f is not transparent in
the case f ý LV(9R)\L1 (93) n L,(9R), e.g., [5], [8], and recent work with
my student, J. Lakey [41].

2) If p = q = 2 then (3.10) becomes

Y12ML CV1ff 2 Mt).(311

If we define the Kelvin operator,

lY~f)(-Y) =

then (3.11) becomes

There is a corresponding inequality in terms of K for the general case
(3.10). Harmonicity in 9R2 is invariant under any conformal mapping.
This fact is not valid in 9 td, d > 2, and Kelvin transformations are used
to provide the invariance of harmonicity in these higher dimensions as
well as 9R2 (W. Thomson, Lord Kelvin, 1847).

Example 3.15.

1) If p = q and v = 1 then (3.10) is the Hardy, Littlewood, Paley theorem
(1931),

(f jf(y)l" "YYj"-2 d-Y i <- C11flh,. (3.12)

originally proved for Fourier series.
2) If q = p" and v = 1 then (3.10) is the Hausdorff-Young (1923), Titch-

marsh theorem (1924),

0l11p, -< Cllfll,. (3.13)

Hausdorff-Young proved (3.13) for Fourier series, and Titchmarsh
proved it for Fourier transforms.
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3) If v(t) = Itl", 0 < Lx < p - 1, then (3.10) is Pitt's theorem (1937),

0If(y)lY-l-Ody) ,/q <_ C (lfIt)l~jtI-dt)1/1', (3.14)

where P = ±(L + 1) + 1 - q. The result was originally proved for
Fourier series. If p = q and a = 0 then (3.14) reduces to (3.12). If
q = p' and o = 0 then (3 = 0 and (3.14) reduces to (3.13).

4) The result in Item 1 was first proved by Hardy and Littlewood, but
in the same year Paley proved it for uniformly bounded orthonormal
systems. Paley's ideas are significant and deal with rearrangements,
cf. J.E. Littlewood, "On a theorem of Paley," JLMS, 29(1954), 387-395.
Salem and Zygmund proved (3.12) for p = 1 when the given Fourier
series is of analytic type (BAMS, 55(1949), 851-859).

3.4. Weighted Fourier transform norm inequalities
and the uncertainty principle

Our path from prediction theory lead us in Section 3.3 to A,, weights which
characterize special weighted Fourier transform norm inequalities. The next
step is to see what is involved in establishing general weighted Fourier
transform norm inequalities.

H. Heinig and I proved the following result during the summer of
1982 here in Toscana (as well as in North America). Similar results were
being proved during the same period by Muckenhoupt and by Jurkat
and Sampson.

Theorem 3.16 ([91). Given 1 <_ p <_ q < oo and two even, non-negative,
Borel measurable functions u and v, which are nonincreasing and nonde-
creasing, respectively, on (0, oo). There is a constant C = C(K) > 0 such that

Vf C- C1 910 OR) 1 l,,.,,• CIfIflh,, (3.15)

if and only if

sup (J' u(-y)dy /q Sv~t)-P'/Pdt) K < oo. (3.16)

Remark 3.17.

1) Naturally, from general considerations, (3.15) allows us to define f for
each f E LQ(9R), with the same caveat to which we alluded in Item I of
Remark 3.14.
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2) Our proof of the necessary conditions for (3.15), viz., the implication
that (3.15) implies (3.16), does not require monotonicity.

3) Given our present point of view of tracing mathematical paths from
Kolmogorov's seminal work, we should point out that Theorem 3.16
was used in our proof of Theorem 3.13.

Qualitatively, the condition (3.16) is in the spirit of the uncer-
tainty principle. In the early 1980s, Heinig and I verified an elementary
weighted Heisenberg inequality by means of Theorem 3.16. In a re-
cent NATO ASI, we developed a full theory of uncertainty principle
inequalities, taking into account significant work of others, working
in the context of weighted Fourier transform norm inequalities, and
utilizing wavelets and coherent states [5].

Theorem 3.16 is just the starting point for weighted Fourier trans-
form norm inequalities. The theory has been highly developed in the
past decade by many harmonic analysts, and is naturally akin to the
topic of restriction theorems where geometry plays such a critical role.
The goal is to characterize norm inequalities such as (3.15) both effec-
tively and computationally, and for the most general class of weights.
Our most recent contribution [8] deals with effective criteria, i.e., no
rearrangements, and measure weights; it also contains references to
recent contributions by others, cf. [41].

4. Stationary frames

4.1. The theory of frames

Definition 4.1.

1) A sequence 'x(nT)} in Hilbert space H is a frame if there exist A, B > 0
such that

Vy E H, A+lly 112 <• •- ( nlr))12 •< B]lA l12,

where (,) is the inner product on H and the norm of y e H is IIy(I =

(y,•y)1 1 2 A and B are the frame bounds, and a frame {x(rt) is tight if

A = B. A frame {x(ri)] is exact if it is no longer a frame when any one
of its elements is removed. Clearly, if {x(n))} is an orthonormal basis of
H then it is a tight exact frame with A = B = 1.

2) The frame operator of the frame {x(n)r is the function S KH - H
defined as Sy (y, x(n,)x(=).
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The theory of frames is due to Duffin and Schaeffer [19] in 1952. Expo-
sitions include the book by Young [561 and the article by my students C. Heil
and D. Walnut [29]; the former is presented in the context of nonharmonic
Fourier series and the latter in the setting of wavelet theory.

Theorem 4.2. Let {x(n)} C H be a frame with frame bounds A and B.

1) S is a topological isomorphism with inverse S- 1 : H -- H. {(S-'x)(n)8}
is a frame with frame bounds B- 1 and A-', and

VE H, y = _ (g, (S-x)(n)) x(m)

The first expansion is the frame expansion and the second is the dual
frame expansion.

2) If {x(n)U is tight, [Ix(n)[[ = I for all rn, and A = B = 1, then {x(n), is an
orthonormal basis of H.

3) If fx(n)• is exact, then {x(n).' and {(S-'x)(rn)l are biorthonormal, i.e.,

VM, n. (x(m), (S-'x)(i)) = 6,v`..

Remark 4.3. We comment on Item 2 because it is surprisingly useful and
because of a stronger result by Vitali (1921) [51].

To prove Item 2 we first use tightness and A = I to write,

jjx(Tnfl 2  = Ix(TTi14  
t -I(x(ni ),x(n.))2;

T / in

and obtain that tx(n',- is orthonormal since each (tnxih/l 1. To conclude the
proof we then invoke the well-known result: if fx(nt) H is orthonormal
then it is an orthonormal basis of H if and only if

Vy - H, 11Y112 = ____ I1y, 2(,))K .

In 1921, Vitali proved that an orthonormal sequence {g-1 C L2 [a, bh is
complete, and so {gn is an orthonormal basis, if and only if

2

Vt E [a, b), f. J , u)duý = t - a. (4.1)

For the case H = L2 [a, b], Vitali's result is stronger than Item 2 since (4.1) is
tightness with A = 1 for functions f =1
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Definition 4.4. Let H be a complex separable Hilbert space. A sequence
{x(n)} C H is a Schauder basis or basis of H is each y E H has a unique
decomposition ij = - c, (y)x(n). A basis f{x(n)} is an unconditional basis if

3C such that VF C Z, where card F < oc, and

Vb,, c,, E e, where n E F and Jb,j <_ )c,j,

Y- b.x(rn) < C - cIx(n)
nEE - nE I

An unconditional basis {x(rt)} is bounded if

3A, B > Osuch that Vrn,A I< jx(rt)] <_ B.

Separable Hilbert spaces have orthonormal bases, and orthonormal
bases are bounded unconditional bases.

K6the (1936) proved the implication, Item 2 implies Item 3, of the fol-
lowing theorem. The implication, Item 3 implies Item 2, is straightforward;
and the equivalence of Item 1 and Item 3 is found in [56, pp. 188-189].

Theorem 4.5. Let H be a complex separable Hilbert space and let 'x(n): C H
be a given sequence. The following are equivalent:

1) {x(!)} is an exact frame for H;
2) fx(n)} is a bounded unconditional basis of H;
3) Nx(n) is a Riesz basis, i.e., there is an orthonormal basis u(n)ý and

a topological isomorphism T : H -* H such that (Tx)(n) = u(n) for
each n.

Theorem 4.6. Let H be a separable Hilbert space and let x(n) ' H be a
frame. {x(n)} is an exact frame <--z ýx(n)] is a minimal sequence.

Proof.
==> Since {x(n)}} is exact we have that {x(n)1, {(S- 1 x)(n)} are biorthonormal
[191, cf. [29, p. 6371. By Item 2 of Definition 2.13b, {x(ni) is minimal.

SSince ,x(r•) is minimal then

Vp, x(p) 4 ~pf{x(n) : n 4 P" (4.2)

To prove {x(n); is an exact frame we must show that each {x(rt) : n € p'
is not a frame. If any {x(n) : n 5 pý were a frame, then by Theorem 4.2
x(p) = F,/, c,,x(n), and this fails by (4.2). 1

Corollary 4.7. Given a stationary, minimal, complete sequence x : Z -- H.
Then {x(rn)} is both a Bessel sequence and a Hilbert sequence if and only if
fx(n)• is a bounded unconditional basis.
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Proof. Bessel-Hilbert sequences are frames by Theorem 2.16. Thus, {x(rn)ý
is a bounded unconditional basis by Theorems 4.5 and 4.6. The converse is
immediate by Theorems 2.16 and 4.5. 1

Example 4.8. Given g E L2 (9jd) and a = (al,. ad), b = (bl,... bd) E
9 td. Assume each aQ, bk > 0. Define the translation and modulation maps,

Tn 0f(t) = f(t - na) and E,,bf(t) = e2 7'itmbf(t),

respectively, where m,,rT E Zd, f E L2 (91d), rta = (nral.. raad), and
mb = (Tin bl....indbd). The Weyl-Heisenberg system '4,m,n : m, n c
is defined by

)in,.n = E,nbTt•,0,

cf. [11, Definition 2.6] for a generalization. If [P .. }is a frame for L2 (9N'd) it
is called a Weyl-Heisenberg or Gabor frame (of coherent states).

Remark 4.9. Given g E L2 (91d) and a,b > 0 for which ab = 1. lf ...... ,
is a frame then it is an exact frame, cf. Theorem 4.5. This remarkable fact (for
ab = 1) can be proved using properties of the Zak transform, which we
now define.

Definition/Property 4.10.

1) Given a = (alG... ad) E .id, with each aj > 0. The Zak transform of
f E L 1 •, ) is formally defined as

Gf(x, w) -a 2 ( f(xa+ka)e2 Tikw' (x(w)4, .td (,.3)
k E; d

where multiplication is component-wise and ad' 2 _- [aC 2. Its his-
tory has been traced to Gauss, from whence the "G" in (4.3); and in
recent times there have been independent formulations by Auslander-
Tolimieri, Brezin-Weil, and, of course, Zak, cf. [36].

2) Formally, Gf is quasi periodic in the sense that

Gf(x 4- n,w) v e- 2 7i6 -G(x,w) and G(x,w + n) = G(x,w)

for (x,w) E .C d X T d and rn E Zd.

The proof of Theorem 4.11 is straightforward, beginning with an ele-
mentary calculation verifying that

Vf E C (ýRd), IIGfllL (Td ,.rt) = If112 .



141 Stationary frames and spectral estimation }

Theorem 4.11. G : L2 (•id) -4 L2 ( 1 d x .Td) is a unitary map.

Given a,b E 9id with each aj,bk > 0. If g E L2 (9.d) and ab = 1, i.e,

a i b1 = I for eachj 1. d, then

G(E,nbTn 0g)(x,w) = E,..(x)El(w)Gg(x,w)
=E,,.,,. (x,w) G g(x, w), (~)E• '

Note that {E.. 1.. is an orthonormal basis of L2 (ad X •d). By isolating Gg
(from G(E,.bTn0 g)) when considering {d1 . it is clear that (4.4), in con-
junction with Theorem 4.11 plays a role in the following result. This result
(Theorem 4.12) has had partial formulations in the coherent states literature
for many years, and seems to go back to the analysis of von Neumann found
in52, pp. 405ff.],n cf. [181, [28, Proposition 7.3.41, [29, Thcorn 4..3.31, [36]1.

Theorem 4.12. Given g C- L2 (911) and a,b E 9Vd with each aj,bk > 0.
Assume ab = 1 and consider the Weyl-Heisenberg system , (defined
in Example 4.8).

1) . is complete in [2(9wd) if and only it Gg t- 0a.e.
2) f0.n is minimal and complete in L2 (91") if and only if I!/Gg q L2 (,"

vi).

3) O,, is an orthonormal basis of E2(.1d) if and only if jGg- 1 a.e.
4) di,, . is a frame for L2 (91d) with frame bounds A and B if and only if

A ! IGg12 !ý B a.e.

In this case, 0,1 ... is an exact frame.

Item I of Theorem 4.12 should be compared with Corollary 4.7 and
Section 4.3, where we note that !4),.,, is stationary in the case ab -- I.

Example 4.13. Given I, 7 1 2(.R1). The wavelet system .),. m, n . n is

defined as

(t) = 2 m 2 iP(2 ...- n_.

If 4), . is a frame for L2( N) it is called a wavelet fram:"

4.2. Multidimensional analogues of classical analysis problems

The extension of the Kolmogorov or Szeg6 or Wiener prediction theory to
multidimensional domains is a natural problem, and has been and is being
pursued, e.g., [15, 371. Chiang's work 115] precedes the well-known contri-
bution of Helson and Lowdenslager. There has been a proliferation of results
dealing with specific topics and diverse levels of abstraction. (For example,
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[20, Preface] provides references for Markovian properties in this setting.)
From the mathematical point of view, the work of Helson and Lowdenslager
[31,32,301 is preeminent. One can reasonably argue its central position in the
development of abstract analysis for a generation, and its influence on such
topics as locally compact abelian groups, Dirichlet algebras, von Neumann
algebras, and HP'-theory, e.g., [53, Volume III, pp. 347ff.] for what now are
classical (or at least standard) references. With all of this, there are still basic
multidimensional prediction problems.

Our goal in this section is to exhibit a little bit of the multidimensional
evolution of one particular classical problem, which played a role in [39]. At
the very least, it gives us the opportunity to advertise two recent and deep
contributions by Benedicks [121 and Gabardo [231. Our slightly broader
goal in Section 4 is to suggest an interleaving of technology between the
theories of frames and prediction, with the hope of bringing new techniques
to bear on the problems in each area. Our method will become apparent in
Section 4.3.

The role of the F. and M. Riesz theorem in one of Kolmogorov's spectral
characterizations, viz., [39, Theorem 23], was discussed in Remark 2.10.

Theorem 4.14 (F. and M. Riesz, 1916). Given ý. ý- M(T) and assume
tftn) = 0 for all n < 0. Then Li = f,,,, i.e., li t LI' (I).

Three years after Kolmogorov's paper [39], Bochner published the fol-
lowing result.

Theorem 4.15 (Bochner, 1944). Given p - M(,T 2 ) and assume ýi vanishes
outside a sector S ii Z2 of opening os < it. Then v E L1 (.T2 ). (Precisely, S is
a closed sector of 9R 2.)

Bochner's work was not only an inspiration for Helson and Low-
denslager's program, in which they generalized Szeg6's theorem dramati-
cally, but in [311 they proved a generalization of the F and M. Riesz Theorem
of which Theorem 4.15 is a corollary, e.g., [48, Chapter 81, a book where many
of us began. Instead of the duality between '. and Z, the setting in [311 is the
duality between a compact connected abelian group F and its discrete dual
group G in the case G is ordered, e.g., [48, pp. 193-194] for the definition of
ordered group.

Ordered groups also arise in the theory of Eohr almost periodic func-
tions, e.g., [53, Volume II1, pp. 347-3481.
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4.3. Stationary frames

Definition/Remark 4.16.

1) A sequence {x(n.) : n E Zd} in a complex Hilbert space H is stationary
if the inner product,

R(mr) = Rx(m) = (x(m + k),x(k) , M E Zd,

is independent of k E Zd, i.e.,

V, t E Zd, (x(M),x(rt)) = (x(M - n),x(0)).

Thus, {x(n))} is stationary if the function s : Zd x Zd --) C, defined as

s(m,' n) = (x(M),x( ()),

has the form s(m,n) = s(m - n,). In this case, R,,(m - n) = s(m -
n), and R, (m) = s(m - 0) = s(m,0) ý (x(m),x(O)). R, is the
autocorrelation of x and is a positive definite function on the group Zd.

R= E M 1 (.1d) is the power spectrum of x.
2) The analogue of Theorem 2.5 is valid for stationary sequences x : Zd

H, where H(x) = p{x(ii) : n EZ the mapping

Z: L•(,(:d) -- H(x),

defined linearly on sp{e 2 "i" Yj by Z(e2mi1yj = x(n), extends to a linear
isometric isomorphism.

3) A stationary sequence 'x{n) : n E Z.d c H is a stationary fraoe if
lxrn) : n E Z'd is a frame in H.

Example 4.17.

1) Given g E L2 (9V') and a,b E 9V1 with each aIj,bk > 0. Consider the
Weyl-Heisenberg system f 01n, : M. n E Zd}, where

bn.n = EbTI,,9g.

If ab 1 1, i.e., ajbi = I for each j = 1,...,d, then the sequence x
Z" , Z' --ý L2 (9qd), defined by x(rn,n) = , is a stationary sequence.
In fact,

(d1)M'n, Opc) Jc- f it (m i-p;bg(t - na)g(t - qa)dt

Se2Ti I t1a) (Jli--ip'bg(u. - (n - q)a)§(u)du
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=ze 27Tit ~b eXp{27Ti qj(Tnj pj)ajb3 }

x×g (u - (T1 - q) ( -• (u)adu

e e2761L (m--pb g(u - (n% -- q/a)4(u/du

=( 4 ¾.-p .... q, g) (ckrn--pn...q,qb,)

and this is the desired stationarity. Of course, the positive defi'iiteness
follows from general considerations, viz.,

n Ciinep, R((M', T) - I(p q))

ClC

Thus, RA M (-dM
2) In the case of Item 1,

R~m, n) J e2niti (T,,cg(u)) 4(u)du.

Clearly, IR(rn,n)l <, 1uglh for (Tnn) E Vd
Also, for each n c- V', (I,g) ij) c [ I (N(), and so

Vn, lim n R(m, n)Jz

( mI ,n c ,

by the Rieman n- Lebesgue lemma. Here, thinking in terms of locally
compact a*Lelian groups, lim( 1. 1 r() =0 indicates that for.all > 0,
there is a finite set K C Zm such that

Vm C- Z-\K, Ir(M)I . . .

Further, by Parseval's theorem,

Rlm,n) -2u'" Ylq(y) (Tl, 1b•Y (y)dy;
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and so, as above,

Vm, lim jR(m, rt) =0.

Example 4.18. Given t C L2 (9q) and the wavelet system {Ni We com-
pute the following

=2-' ji .(2..t - rW)P(2 1't - q)dt

=2Y >li (2...'(u + q) - n) ý;(u)2-1'du

= 2 "Y' f(2"-'u - (r - 2'-"-q)) '4(u)du.

Thus, {f,,,,'} is not a stationary sequence since rn - 2" 1.. q - n, - q unless
m = p.

Besides Example 4.17, there is another relationship between Weyl-
Heisenberg systems and power spectra which we first proved in the AMS
series, Contemporary Mathematics, 91(1989), pp. 9 - 27 .

Theorem 4.19. Given g c L' (sI). Define the (analogue) Weyl-Heisenberg
system,

E,,,T g(t) ý c 2 
nit t - xl,

(x, wv) E 91 IN, and the L1 -Weyl-Heisenberg transform,

V ec'(9i), w (f (X, L) = I lj ý,Wt

Assume g has a continuous autocorrelation,

Vt C 91, R(t)= ujim g(t + u)g(u)du

with R(O) > 0; and let lP,ý C_ L' (9i) have the property that -pv, L L1 (9i) is
an L '-approximate identity. Then

Vf e L'(9q), lim If -f"11 = 0,

where

f(t lim - W(f)(X,wV)4,ý,(t)p,(w)dxdwo.
R(0) 1-4. 21TJ -T
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Remark 4.20. If g = 1 then the L1 -Weyl-Heisenberg transform is the ordinary
Fourier transform; and Theorem 4.19 is the usual LI-inversion theorem for
the Fourier transform.

The autocorrelation defined in Theorem 4.19 corresponds to the auto-
correlation defined for stationary sequences in the case of correlation ergodic
processes. Also, it is possible to substitute other modes of convergence in

the definition of autocorrelation and still obtain Theorem 4.19.

Point of view. Given the stationary sequence

x: Zd x Zd --) L2(9t4),

where x(m, rt) = • for some g C L2 (,d) and ab = 1; and suppose

H(x) =- L2(id),

where H(x) = spp{x(m, rt) - (m, rn) E Zd x Zd1. If ý± is the power spectrum of
x then

Z LP L2 (91d)

is a unitary map, as is the Zak transform,

G: L 2 (9_-4d) - L2 (T , ,d),

and the induced map,
G oZ :_2 (,.• ,C ,-d - [2 (.l[d • - -[d

In this last case,

G o Z(E ..... )(x, w) E,.,, (x, w)Gg(x, (o),

cf. (4.4). Note that p > 0 is a periodic measure on 9 jd x ,•a, and Gf is
quasi-periodic on 9ýd X !jd for each f E L2 (9 1d).

The general problem we pose is to analyze and compare the periodic
measure p and quasi-periodic function Gg vis a vis obtaining results in mul-
tidimensional prediction theory and the decomposition theory for coherent
states, e.g., Theorem 4.12.

In one direction it is natural to establish the role of .t in formulating
criteria for expansions such as those given in Theorem 4.12, in the case
the Zak transform of g is more intractable than p. In the other direction, we
envisage incorporating the Zak transform of g in obtaining "spectral" charac-
terizations of deterministic properties of various complete Weyl-Heisenberg
systems indexed by g E L2 (9!d). There are partial results, and, assuming
further progress can be made, these will appear elsewhere.
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5. The spherical Wiener-Plancherel formula

5.1. Wiener-Plancherel formulas

What exactly is a Wiener-Plancherel formula? Given a function 4) defined
on 9 1 d having Fourier transform $ defined on !td(= 91d). Suppose the
distribution 4) is intractable, as is likely for poorly behaved 4). Let s be
an operable integral of $), i.e., suppose that s is a well-behaved function
and that Ls = $, distributionally, for some differential operator L. Wiener's
idea was to deal with a computable function s instead of the more esoteric
distribution $), and to relate the quadratic behavior of 4) and s. In particular,
for the spherical case dealing with balls B(O, R) = {t E 9 1d: Itl < R} having
volumes 1B(0, R)I, a Wiener-Plancherel formula has the form

lim 1 j I4)(t)12dt = Q~s),
R-•oo IB(O,R)l Jlo,R)

where Q(s) is an explicit quadratic expression and Q, s and L are interde-
pendent, cf. (5.1) for the exact formula. In Wiener's original result (d = 1),
Ls can be correctly formulated as a first distributional derivative of s, and

Q(s) = lim r F IsUy + A) - s(y- A)12 dy.

The Plancherel formula allows one to define the Fourier transform of
a square-integral function f, and, at certain levels of abstraction, it is con-
sidered as characterizing what is meant by an harmonic analysis of f. On
the other hand, for most applications in 9S1 , the Plancherel formula assumes
the workaday role of an effective tool used to obtain quantitative results.
It is this latter role we envisage for Wiener-Plancherel formulas in the non-
square-integrable case. After all, distribution theory (in 9id) gives the proper
definition of the Fourier transform of tempered distributions. The real issue
is to obtain quantitative results for problems where an harmonic analysis of
a non-square-integrable function is desired. A host of such problems comes
under the heading of an harmonic (spectral) analysis of signals contain-
ing non-square-integrable noise and/or random components, whether it be
speech recognition, image processing, geophysical modeling, or turbulence
in fluid mechanics. Such problems can be attacked by Beurling's profound
theory of spectral synthesis, as well as by the extensive multifaceted theory of
time series, e.g., (46]. Beurling's spectral synthesis does not deal with energy
and power considerations, i.e., quadratic criteria, and time series relies on
a stochastic point of view. Our goal is to implement Wiener-Plancherel for-
mulas to address the above-mentioned group of problems. These formulas
are well-suited to deal with energy and power; and they provide an analytic
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device which should dovetail with spectral estimation methods (from time
series) developed since Kolmogorov's and Wiener's time.

In Formula 5.1, we shall state our spherical Wiener-Plancherel formula,
viz., (5.1), without going into any detail concerning hypotheses and motiva-
tion. We feel that the technicalities and hypotheses are sufficiently complex
to warrant a displayed version at the outset. The relation between (5.1) and
the Wiener-Khinchin theorem, as mentioned in Section 2, becomes apparent
in Section 5.4.

Formula 5.1. The spherical Wiener-Plancherel formula is

lim I f I(p(t)12dt
R-_ IB(0, R)I B(0.R) (5.1)

= lir c(dk)(27t) 4 k f Dsk Y)12dy,
A-0 WdIA

4 k-d J
cf. Theorem 5.6 for a precise statement of hypotheses for the validity of (5.1 .
The function sk is the Wiener s-function,

Sk = ý * Ek, (5.2)

where AkEk = 6, d•_ 1 is the surface area of the unit sphere -- 1, cld, k)-1
is the L'-norm of a special function related to the Fourier transform of the
restriction of surface measure Ud- 1 to E-,, e.g., Example 5.4,

DxSk = Sk - MASk,

and MYA is the spherical mean-value operator defined by

MSk(y) -= I sk(y +;M)d da,(0).
Wod--1 I-d I

The integer k is related to the dimension d, and there must be control of the
quadratic means of d4 over spheres in order to verify (5.1). The operator L
described above is the iterated Laplacian Ak.

Remark 5.2.

1) In previous work with my students G. Benke and W. Evans [71, we
proved a rectilinear version of (5.1). The rectilinear result is easier
to prove than the spherical one, although by no means elementary.
Also, in the case of "rectilinear geometry" the operator L is the hyper-
bolic operator

L = al8 2 ... ad;
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whereas, the "spherical geometry" of (5.1) gives rise to the elliptic
operator L = Ak. This remark indicates there is a range of Wiener-
Plancherel formulas according to the number of degrees of freedom
available in various convergence criteria.

2) It is natural to expect significant differences between the rectilinear and
spherical cases.

The analogous situation with the convergence problem for mul-
tiple Fourier series makes this point clear. There are several natural
rectilineai convergence criteria for multiple Fourier series, and there
exist positive results in some cases. For example, using the Carleson-
Hunt theorem for d = 1, C. Fefferman [21] (1971) proved that

lim ame ... = (t), a.e. (5.3)
R--•ooT

inERPnfZa

for 4) E LP(9qd/Zd), 1 < p _< oo, where P c 9V is a d-dimensional
polygon. The rectilinear convergence we used in [7] is analogous to the
so-called "restricted rectangular" convergence criterion in the theory of
multiple Fourier series; this criterion is different from that of (5.3). If the
polygonal convergence of (5.3) is replaced by spherical convergence,
then it is not known whether all the elements of L2 ()d!/ZA), d > 1,
have a Fourier series representation pointwise a.e.. There are negative
results if p < 2. The problem of multiple Fourier series with spherical
convergence criteria is closely related to deep problems associated with
Bochner-Riesz multipliers. There are some positive results, and we
close this discussion with one such theorem due to Carbery and F.
Soria (1988): if d _> 2, ax > 0, 2 <_ p < 2d/(d - 1), and (ý is an element
of the Sobolev spat-" T 1•? ld}, then

lim f 4(y)e 2
n itYdy = 4Ot),a.e.

R--+ wc )(,Rý

Example 5.3. A formula such as (5. 1) established a mapping between spaces
of functions. For example, if the left side of (5.1) is finite then 1141112 (,)1,1 <
oo, where B2 (9ýq) consists of functions having bounded quadratic means
over spheres. There is a hierarchy of Besicovich spaces B(p, q) of which
B2 = B(2, oo). For the right side of (5.1) the corresponding hierarchy V (p, q)
is related to Besov spaces. In the case d = 1, the mappings B(2, 1) -4 V(2, 1)
and B(2, co) -t V(2, oo), established by Wiener's original Wiener-Plancherel
formula, are topological isomorphisms. The first mapping is a consequence
of an important result by Beurling [131, coupled with an extraordinarily
clever insight of my student C. Heil [28]. The second mapping is due to
Chen and Lau [14]. Taking d > 1 and using the rectilinear Wiener-Plancherel
formula in [7], Heil also proved that the mapping B(2, q) -+ V(2, q) is a
topological isomorphism for 1 _< q •< 0o.
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5.2. The spherical Wiener-Plancherel formula

As mentioned in Formula 5.1, we need the following example in the basic

formula (5.1 ) and in Theorem 5.6.

Example 5.4. For each dimension d > 2, we utilize the function,

Kk(r)= r4k-d - 2n I r-- d 2_ (T 27T
W.d-- M1

where k _> 0 is an integer, r > 0, and J is a Bessel function of the first kind.

Definition/Remark 5.5.

1) The space B2 (9qd) of functions having bounded quadratic means over
spheres is the set of all functions 4) c L1-,. 2(9Vd) tor whkh

1140J1312M.) = SU ( I Lf, 1kP(t)12dt < 00. (5.4)R'e 0B(0 R) oR)

B2 (9td) is a Banach space with norm defined by (5.4).
2) Given 4P E L1 0,

2 (gi,). The spherical average of 4) is the function (D
defined as

0 (r) f k> I I4(rO)12 dard 1-(O), r > 0. (5.5)

3) A basic propertyof spherical averages, and one that is relevant for com-
parison with the classical and rectangular Wiener-Plancherel formulas
[7], is that

(D E L' implies 4) E B2 (!NI). (5.6)

The verification of (5.6) is immediate:

1tdt = CdD r Wd'l1(r) dr

dlB(O, R) -

4) Clearly B2 (9qd)\L¶(91d) 4 0. In fact, we can choose a continuous
radial element 4 E L2 (9d) for which limr-,jd)(r)j = oo. This function
also shows that the converse of (5.6) fails since 0(r) = 4(rT)12. Further,
this observation shows that, for the class of radial continuous functions,
(D E L° if and only if 4) E L[O (Td).
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The following result is our spherical Wiener-Plancherel formula.
Wiener's Tauberian theorem (for the multiplicative group of reals) plays an
essential role in its proof.

Theorem 5.6. [6] Given 4) G Lt.,,2 (9td), which is bounded in a neighborhood
of the origin, and an integer k for which 4(k -- 1) < d < 4k and d > 2k
(d > 4(k - 1) implies d > 2k for k • 2.) Assume the spherical average (D
of 4) is an element of LO. Then sk = (4 ) E' )^ E $,(9 d), and the spherical
Wiener-Plancherel formula (5.1) is valid in the sense that if the left side exists
then the right side exists and they are equal. The constant c(d, k) in (5.1) has
the explicit representation,

c (d, k) -' = , Kk (r) dr .

F r

Another technical ingredient in the proof of Theorem 5.6 is stated sep-
arately below as Theorem 5.7 because of its use in Example 5.4.

5.3. The Laplacian and spherical mean value operator

Theorem 5.7. Given g E L2 (ý9d), 0( E C, and f c -/ 9 d j. Assume f satisfies
the following conditions: fv 2: 8'( 9 1d) is a Borel measurable function,

3R > 0, such that fv c- Lto, 2 (B(0, R)

and

Itl'fv(t) E Lt.,-2(lid).

Then f - 2,; f e L2 (il ) and

Ig - - MAf)12

gvt~cf~t(~ 27T (5 .7)

Proof.

1) The hypothesis, ItI2fv(t) E Lo, 2 (9 'l (, implies that fVE L-, 2(9d \ý0N.)
In fact, if K C 9td is compact and 0 ý K then

LK fV(t)l 2 dt = LK t4IfVlt)12dt _< C LltI
4 fv(t)12dt < "o.

If we did not assume fv to be a Borel measurable function then it
could contain terms of the form a&.
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2) We now prove

fV(t)@\(t)

fV(t) ( 27-2T, (itiA) 'T' j -2 (27TItIA)) E L2 ( d). (5.8)

Since fv(t) E L2 (B(0, R)) and

Supt It2-a 2 J _ (27iltIA)2 < C sup Itl-d, 2 (27ttA)-1
Itl>_R Itl1;ý

<_ CA sup tl 1 <, CAR-", 1
ItVŽR

it is sufficient for (5.8) to dominate

I f=(t) 1 - 27 (tl _ I, (27lttA))2 dt. (5.9)
B f riO,R) 1 d~-

This integral is

fV• ( { ( U tIArd (2 tA)

(0j 1 2r d2271 ) 271t A(27 t (2rrt )2)t

27T (--712 t2 2)k } 2
if v (t ) /\ I d t

•,o.•,!~ ~ 1td1 dt.F•+k

Thus, by Minkowski's inequality, we have

1, 2 < I 27T d2 (7ItIA) 2 k

d (7A)'2-1 krf( t 2 ij K
((•' {t)2k 'lv tllkl: /

k d 4

and this is finite since jt12 fv(t) € L 1t,2(Nd). As a consequence, (5.8)
is valid.

3) Distributionally, we have

Vi, E {S( d), (fVeA,)(;) = (fVO,\)A(p•)
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The left hand side is

f fv(t)(exý)(tfdt f fv(t)(e0(t)4,(t))dt = f-o,\b]A

= f(-y) I( IQf e- 22 { 7ji t-AO dCd-I (e) 4(tle 2lit '/dt)
= (f (, W- 1t

= f(y) (,(Y)

I * (Mte-2,nit(y 1 NO) dt dod-1 (0)CO -d- fl d I (

S = f* - (-q f)(, (f - ATNOW.

Thus, f - Af,_f = (fV0 ()A.

Since fvOA E L_2 (9ýR) we know that (fVl\)A E L 2(91d), and,
hence, that f - A•VAf : L2 (vR'd). (5.7) is a consequence of the
Plancherel theorem.

The operator (on the function f),

-2d (-k f - Yl",,f,

corresponds to the Laplacian in !), in the same way the difference operator,

2T -Af - TN f), (5.10)

corresponds to the ordinary derivative in !, cf. [7] for the rectangular gen-
eralization of (5.10) to 90, and Item 1 of Remark 5.2 for the corresponding
differential operator. Wiener made the following calculation for the case
d = 3 [53, Volume I11, pp. 718-7271 (1927).

"Theorem" 5.8. Given f ý- 8'(91" for which Af c L2(91a) and f" is Borel
measurable. Then

lira Af - (_ --d) (f__Nff) =0. (5.11)A-- 0 T22

"Proof". Since Af is a convolution of f t-- S'T) and a distribution
having compact support, the exchange formula is valid and AfV(t) -
---4rt2Itjfv(t) • 8g(gid). The hypothesis, Af E kL2(ýj), allows us to
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conclude that -47T 2 (tI2 fV(t) E L2 (MVd). In particular, the hypotheses of
Theorem 5.7 are satisfied and so we have

Af (- I) (f - 2)ýJ

- fv(t) (,Id {-27T2(t(2 A2  (.2=l _• d (5.12)

S 2 71 (It I )- d r ' J. -_ (2 7t2

Using the series representation of J, the right side of (5.12) becomes

ft) 2d { i 2c (tA'(27.Elt)A r.I]

S2(7TdtIA)2
+ d

.. ..1 -- = -- _ ) ] (5.13)LO(I--1 2 F(d +. I)

LL'dI 1 k k!r( -+ k) 2

where we use the fact, F(d/ 2 + 1) = d/ 2F(d/2), to eliminate the k 1 term.

The right side of (5.13) forinally tends to 0 as A tends to 0 since k :• 2.

5.4. Multidimensional spectral estimation

Definition 5.9. Given L) f L•,,j(I' 1 ) and define

VR1 > )t + x)4)(x-dx.
R P (,,. t) = F1-B(0,R• I IH (0.R

Suppose that there is a continuous positive definite function PI, for which
limR_, Pd,,.y P4, in the a(M(.d(), C, (t)) topology, where M(O ) is
the space of measures on 9 1". Then P4, • L' (19) is the autocorrelation of
4), and the positive measure p, P04, is the power spectrum of 4), cf. the
Wiener-Khinchin theorem (Theorem 2.2).
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Remark 5.10.

1) Depending on the particular problem, the weak topology in Defini-
tion 5.9 can be replaced by various other convergence criteria, including
pointwise convergence.

2) Given q ci LL, 2 (9 jd) with power spectrum 4,j, and assume there is an
increasing function i(R) on (0, oo) for which sup, 14 (t)I <-. i(R) and

limR-.. i(R) 2 /R 0 0. Then we can prove that

Vi E C, (N9d), (5.14)

lim 1 I ' * . (t)12dt f - ) (Y)12 dp4,(y),

[2, Section 51.

If we take 4' = , in (5.14) then the left side of (5.14) is the arithmetic
mean on the left side of our Wiener-Plancherel formula (5.1). Given 4ý _
L[,,• 2 (91() and combining the formulas (5.1) and (5.14), it is then reasonable
to expect that

c(d, k)(2 7"t)4 k,im [D,\,scq : (5.15)

in some weak topology. In this same spirit we provide the following calcu-
lation which Wiener made for the case d - 1 [53, Volume Il, pp. 219-223]
(1930).

Formula calculation 5.11. Given 4' l-t LL 2 (9 jd ) with autocorrelation Pq,.
For t C j•d,

Jim c (d, k),(271 [41 D,,sk(y)i2 e2 '_"t 'dy = Pd,(t). (5.16)
A -0 hvj - IA4k -d

"Proof".

I) A direct calculation gives

P4,(t) Jim f (t + x)(x)dx

1 -im -1 {14)t r X) + x)X 2
4 k-,- 1B(0, R)I JIO,)

- 1•(t + x) - 4(x)) 2 + •Id(t + x) + iO(x)j 2

--il(t + x) - i4)(t))2 1 dt
I
-(K 1 - K2 `-!K -iK 4 ).
4
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2) Let O;(x) = 44t + x) + c4(x), where Icl = 1; and write sk(O)(y) =
(3E')A(-y), so that Sk()P) = Sk. By the Wiener-Plancherel formula we
compute the following

lim 1 f jl. (X)12 dx
JB(O,R) 1 BI0,R)

=,lim c(dk)(27T) 4. k Dsk-td))(y) + Dxsk(cPb)(y) 2 dy

= lim c(d, k) (27 T)4 k " jD) ,sD .(T c))(y) -_k[7)y
X-4 0 WOd- lk i J d .D ,\,,

+ (C 4c ± e2rit Y)D.Dsk(4)(y)2 dy

= E + lim c(d, k)(2 7T)4k " IDsk((P)(yU2 IC -k 2nit < dy,
A-0C (V1,jA4k jd

(5.18)

where the "error" I is estimated by

li m c(d, -(27- )4-k

4 - D •S (-r to )("y) - c '2 i l)\Sk(l)(Y dy..

Under natural hypotheses, and implementing Theorem 5.7 we
can show that the limit in (5.19) vanishes, i.e., E = 0.

3) We now combine the right side of (5.17) and (5.18) with L - 0, for the
four cases c - 1 1, t i. Thus,

Slirr cd,k2 t)0'Pq,'(t) ,1 1, 111 iX+ d !) sk T

• (2 t (y ) + c, (-y)) (2 - e (y) - ct (y))

i(2 ic -It(-y) iet(y)) -i(2 ic I(y) , ic (yf)ldy,

where c,, (y cC2 ', ). Combining terms, we obtain (5.1(,)

Formally, (5.15) and (5.16) are compatible. If we aregiven data q),, on a
set S, these formulas lead us to consider multidimensional sp('1LrNl estinators
molded from expressions of the form

c(d, k) k (271452



{ 157 Stationary frames and spectral estimation }

Instead of continuing this section with a quodlibetic discussion of spec-
tral estimation, we shall refer to the classical spectral estimation algorithms
and results on evolutionary spectra for nonstationary processes, e.g., [46,
Chapter 111.

6. Notation

Let G be a locally compact abelian group with dual group F, e.g., G = 91C
and F = •d, where 9Rd - Etd is d-dimensional Euclidean space, or G =-
T = 9/Z and F = Z, the group of integers. Mb(F), resp., M+(F), is the
space of bounded, resp., positive, Radon measures on F; and Mb (F) =
Mb(F) n M 4 (F). L"(9id) is the weighted L"-space defined by its norm,
fjp-, = {S(fP'd~ ), where I •< p < oo, ýi E Mi(l), and integration

is over F.
The Fourier transform of f E L 1 (91d) is f(y) =J f (t)e-27ut Ydt, where

integration is over 9R'; and ýt' designates the inverse Fourier transform of
t4 E Mb(F).

If S C G then ISI is its Haar measure and ls is the characteristic function
of S. 6,U, is 1 if m = n and 0 if m 3 nt. Finally, if X is contained in a
topological vector space H then spX is the linear span of X in H, and `pX is
its closure in H.
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a The theory of iterated fuzzy set systems, IFZS, was introduced by Cabrelli
et al. in [41. They showed that by combining the idea of representing an
image as a fuzzy set with the theory of iterated function systems, it is possible
to generate images with grey or colour levels as attractors of IFZS. The
purpose of this paper is to show that the class of attractors of IFZS is dense
in the class of images, i.e., each image can be approximated with the desired
accuracy. A brief review of the main concepts of IFZS is presented first.

1. Introduction

We first want to present an overview of the theory of iterated fuzzy set
systems (IFZS). Since a complete development of the theory can be found
in [41, we are going to omit most of the proofs. We then show that the set
of images that can be obtained using this approach, is dense in the set of
all images.

The notion of self-similarity and its generalizations 1 , has found a nat-
ural frame in the theory of iterated function systems (IFS): self-similar sets
became attractors of certain systems of maps 110, 1, 81. The generalization
of the concept of self-similarity to a more general class of maps--other than
similarities, introduced more flexibility in the model, widening the class of
sets that have the property to be expressed as smaller copies of themselves.

1 A subset S of an arbitrary set X, is said to be self-similar (in the wide sense) if

thereexista finitenumberofmaps f . fN, ft : X -ý Xsuchthat S = UI <1., N fj(S)

163

J. S. Byrnes et al. reds.}, Probabilistic and Stochastic Methods in Analysis, with Applications. 163--173.
0 1992 Kluwer Academic Publishers. Printed In the Netherlands.



{ Cabrelli, Molter 164

On the other hand, the use of IFS enabled the construction of self-similar sets
of fractional dimensions, and therefore this theory has found wide applica-
tions in computer graphics to generate fractal images on computers (see for
example [3,13]). The ergodicity involved in the process is another advantage
that this method provides in image generation and representation, see [7].

One of the major applications of IFS theory in image processing, is in
data compression: huge amounts of data can be squeezed into a few number
of parameters. Two questions naturally arise:

"* Which kind of images can be represented through this model, or, how
big is the class of images that can be represented through IFS?

"* Is there an efficient algorithm or method to find that representation?

Regarding the first question, in the case that the maps are contractive

but not necessarily similarities, it has been shown [9] that this class is dense
in the class of compact sets. In image processing language this means, that
to any object in a black and white image, one can associate an IFS code. This
result shows that the so-called inverse problem for fractals and other sets,
that is to find the IFS code associated with any given black and white image,
has at least one solution. It is well known however, that in most of the cases
the solution that can be constructed from the proof of the theorem does not
yield good compression rate. It is a very difficult problem to find an efficient
IFS code for a given black and white image. Some results in that direction
for the one dimensional case can be found in [2, 5, 16].

In the case of images with grey-levels, the IFS theory provides us with

a class of measures that are generated by adding a probability vector to
each IFS code. The ergodicity allows one to generate this measure through
a random iterative algorithm. This approach however, seems to have two
weak points: first, the relation between the parameters and the resulting
measure is not straightforward, and this then becomes a serious difficulty
for the inverse problem. Secondly, the class of measures that can be obtained
through IFS, seems not to be as wide as desirablo. The question of how
big this class of measures is in relation to a suitable space of measures (here
suitable refers to images) seems to be still open.

The IFZS approach to grey-level images considers images as functions

rather than measures, and hereby tends to avoid these problems. In that
direction, Theorem 3.1 of this paper shows that the class of images that can
be generated using IFZS is dense in the class of images, i.e., given a grey-lev.,l
image, we prove that for a given e there exists an IFZS whose attractor is
closer than c to that image.
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2. The iterated fuzzy set systems (IFZS)

2.1. Iterated function systems (IFS)

s Let us briefly recall the basic notions of IFS. Given a compact metric space
(X, d) with distance d, let us consider N contraction mappings wi : X -4 X.
The metric space X, together with the N contraction mappings is referred
to as an Iterated Function System (IFS) and denoted by {X,w}. Usually, in
applications, X is a compact subset of 91'.

If XM(X) denotes the set of all nonempty closed subsets of X, we can
define N set-valued mnaps iv : X-(X) -4 J((X), by ivi(S) = {w (x) : x t S ,
e.g. the image of S under the transformation wi, for all S E [30(X). If h is the
Hausdorff distance in 3f(X):

h(A, B) := max{D(A, B), D(13,A)} (2.1)

where

D(A,B) =sup inf d(x,y) (2.2)
XEA YjEB

then (:-(X), h) is a compact metric space, and iýi are contraction mappings
of X (X). The map W : X- (X) -) X (X) defined by:

N

W(S) = U i[US), VS E 9-0(X) (2.3)
i- 1

is also a contraction on H-(X). Therefore it possesses an unique fixed point
(or invariant set) A, called the attractor of the IFS;

N

A = W(A) = UJ w(A). (2.4)

This shows that A is self-similar with respect to w1 . W WN. This property
is sometimes referred to as the self-tiling property of IFS attractors, meaning
that A can be built with smaller copies of itself. As well, the name attractor
is justified by the following property:

h(W'(S),A--- 0 as n -4 oo, V S E H-f(X). (2.5)

2.2. Fuzzy sets as generalization of sets

The notion of fuzzy sets introduced by Zadeh in 1965 117], has been widely
used in different contexts. We want to use it here in the sense of a general-
ization of the concept of set: If X is an arbitrary (non empty) set, a fuzzy set
(in X) is a function u with domain X and values in [0, 1M, i.e., u : X -4 [0, 1].



{ Cabrelli, Molter 166

In particular, if S is an ordinary subset of X, its characteristic function Xs
is a fuzzy set. To relate this concept with images, we think of a digitized
picture as a set of pixels, each of which has associated a grey-level; the value
1 representing black or the foreground, the value 0 representing white or the
background. The value u(x) then corresponds to the grey-level of the pixel
x. If the image is black and white, we only have two values: 0 or 1, and
therefore we can represent it by a characteristic function, or a "set."

If T(X) denotes the class of all fuzzy sets in a metric space (X, d), i.e.,
all functions u : X -- [0, 1], we are going to restrict ourselves to a subclass
Y* (X) C 5-(X): namely, u E -* (X) if and only if:

1) u. - (X),
2) u is uppersemicontinuous (u.s.c) on {X, d),
3) u is normal, that is u(xc) = I for some xe t X.

These properties yield the following results:

a: For each 0 < a < 1, the x-level set, defined as ýu]• :- x l X
u(x) _> oc, is a nonempty compact subset of X,

b: Theclosure of {x - X : u(x) > 0,, denoted by [ul', is also a nonempty
compact subset of X.

Note that the characteristic function of a closed set is in 3X ). We also want
to point out here that the level sets of the fuzzy set u completely characterize
u, i.e., knowing u(x),Vx - X, is equivalent to knowing Jul, 0 ! a • 1.

By the above properties, [uV 1 JtW(X), 0 ý< a 1< 1. We now introdu ce
the metric d, on r*(X) (see [6]), which has been used in many applications
of fuzzy set theory [11, 12, 15]:

d,(u,v) = sup h(ul,'vV'i? Vuv JiX). (2.6)
0 a.ix. I

Here h is the Hausdorff metric introduced in (2.1). The metric space
(93 X),d-d, ) is complete. This space represents the generalization of the
space ( h3{(X),h) to fuzzy sets.

At this point we want to incorporate the IFS theory into the fuzzy set
frame. Therefore, we first use the extension principle for fuzzy sets [18, 14]
in order to extend the set-valued maps ivi defined in Section 2.1 to maps
between fuzzy sets, i.e., we want to define a map from ,q"(X) to ',J*(X) which
is equal to ',- (with the earlier mentioned identification) when its domain is
restricted to the characteristic function of a set. Therefore we define for each
u ( Y7(X) and each subset B of X,

ii(B ) :=supu(y : y (. B7, ifB ý-0

ui(0) := , (2.7)
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which implies, in particular, ii((x}) = u(x) at each x c X.
For each wi, i = 1, 2,..., N, and each x e X we now define

iii(x) := ii(wi 1 ({x})), (2.8)

where, of course, w- 1 ({x}) = 0 if x ý w(X). If u E 7* X), then each of these
functions ii : X -4 [0, 11 is a fuzzy set in T* (X) (see [4)).

In fuzzy set theory, the union of two fuzzy sets u,v is usually defined as
the fuzzy set sup(u,v). We could then generalize the contraction mapping
W given by equation (2.3) to a map, : 97* (X) - 9* (X) defined by:

iw(u)(x) = sup iii(x), for each u E * (X). (2.9)

1<-i-<N

In [41 it is shown that this is a contraction mapping on Ti*(X) with the d.,-
metric. Therefore it has a unique fuzzy attractor u* E P (X), e.g., •,(u* ) = u*.
It turns out however, that this fuzzy attractor is the characteristic function
of the attractor of the IFS {X, w}. This means that the direct generalization
of the IFS theory to Fuzzy Sets, does not provide us with a bigger class of
attractors. We will see in the next section, how this class can be enlarged
without losing the contractivity of the map ý,.

2.3. Modification of the grey-levels of the attractor

In order to gain more generality with the fuzzy set model, the "grey-level
maps" are introduced. To each uii(x) defined in (2.8), a grey-level map

(pi : [0, 1] --ý [0, 1] is associated, in order to modify the values of u-j, that is
the grey-levels.

Now the supremum of (2.9) is taken over the functions Ui modificd by

the functions (pi; e.g.,

u"- sup t oui1 . (2.10)
1• iý i!: N

In other words, an operator T, : 3"(Xl ) f*(X) is introduced:
(TsU)(X) := sup{p 1oi [U(x)) .... pN (iiN(xfl]

= suptqPo (ii(w7 '(x))).. PN(ii(VVl(X)))W. (2.11)

In order for the operator T, to be well defined, the grey-level functions Wt
have to satisfy certain conditions, namely: for i = 1,2 .. , N,

1) (pi : [0, 1-- [0, 11 is non-decreasing,
2) yj is right continuous on [0, 1),
3) (Pi(0) = 0, and

4) for at least one j E {1,2,..., N(, (0 l(1) 1.
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The fact that (oi are non-decreasing and right continuous, guarantees the

uppersemicontinuity of pi ou for any u in 9r*(X), moreover they are necessary
and sufficient conditions [4]. Property 3) is a natural assumption in the

consideration of grey level functions: if the grey level of a point (pixel) x E X
is zero (the pixel is in the background), then it should remain zero after being

acted upon by the (oi maps.
The set of maps (D = {qoii = 1, 2,..., N}, satisfying the above condi-

tions, together with the N contraction maps wi (which then yield ui) form
the Iterated Fuzzy Set System (IFZS) denoted {X, w, 0).

In [4] it is shown that the operator T, as defined in (2.11) is indeed a

contraction mapping on (J**(X), d.), i.e., T, maps 97*(X) into itself and there

exists an s, 0 <_ s < 1, such that

d. (T,,u,T~v) _< s d.(u,v) Vu,v E V*(X). (2.12)

Therefore, by the Contraction Mapping Principle, T, possesses an unique

fixed point u*, that is:

T~u* = u*. (2.13)

This implies that there exists a unique solution to the functional equation in

the unknown u E P*(X),

u(x) = sup p(,I(w( ' (())),1(4( ()x' / ...... (2.14)
WN (ui(WN x)), .4

for all x E X. The fuzzy set solution, u*, will be called the attor or
fuzzy attractor of the IFZS, since it follows from the Contraction Mapping
Principle that

d,((T,)"v,u*) -4 0 as n oo, Vv E 37*(X). (2.15)

It is easy to find examples showing that these fuzzy attractors are not
longer only characteristic functions of closed sets. Hence, using IFZS, the

class of images that can be obtained using IFS has been widened. In section

Section 3, we show in fact that any image can be obtained (up to an 0) as a

fuzzy attractor of an IFZS. Note that in the case that all pi are the identity
maps, the operator T, reduces to the one defined in equation (2.9).

2.4. Properties of the fuzzy attractors

It is worth mentioning several properties of the fuzzy attractors. The proofs
can be found in [4].

Property 2.1. If A E 9f(X) is the attractor of the IFS {X,w}, and u* E *(X)

denotes the fuzzy attractor of the IFZS 1X, w, (l), then support(W) C A, thatis, [u*]° C A.
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This means, that using the grey-level maps, we are able to modify
the support of our attractor, allowing for example a rough approximation
through the wi, and then a "fine-tuning" using the opj. This property may
be used for applications, if we want to find the IFZS code for an image. Note
that support(u) is exactly equal to A, in the following two cases:

*For alli E {1,2. N),(p i (1)=1, then u*=xA.
"* For all i Ef (1,2 ... N},ýpi are increasing at 0 (i.e., (P-'(0) = 'O). In-

deed, in this case [u* UN wj([ouf]°) = U.J1 wi(A) W(A) =

A.

We should also point out that in the case that (p)(0) > 0 for one j -

f 1,2.... N},this inclusion is not longer true.

Property 2.2. The level sets of the fuzzy attractor satisfy a generalized self-
tiling condition:

N

U*= U 'i([i oU*]7), 0 < x s 1. (2.16)
1 1

This condition is a consequence of the property of the operator T,:

N

[Tu]•' = U wi(kpoi ou]"), Vr T'fX) (see[4]). (2.17)
i I

This property is interesting, since it shows that the fuzzy attractor is no longer
self-similar, in the sense, that it is no longer the union of smaller copies of
itself, but rather a union of modified copies of itself. The modification is given
by the grey-level maps.

Property 2.3 (IFZS Collage Theorem). Let u e .'T(X) and suppose that
there exists an IFZS {X,w, (D; so that

d,(u,T, u) < c, (2.181

where the operator T, is defined by (2.11). Then

d.,(u,u') < i (2.19)

where u" = Tu*u is the invariant fuzzy set of the IFZS, and s is the maximum
contraction factor of the wi.

This means that if the wi are very contractive (i.e., s is very small),
every fuzzy set that remains relatively unchanged after the application of
the operator T•, is close to the fuzzy attractor.

This property, a direct consequence of the contractivity of T%, is (as for
IFS) very useful for the inverse problem.
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3. Density of fuzzy attractors

In this section we will show that the class of fuzzy attractors is dense in
3-*(X) with the d.- metric. In other words, given a fuzzy set u in T*(X),
and c > 0, we can always find a natural number N, N contraction mappings
wi : X --) X, and N greylevel maps yi : [0, 11 , 1', such that the fuzzy
attractor u* of the associated IFZS [X,w, qDý satisfies: d. (u,u*) < F. We
therefore have the following:

Theorem 3.1. If X C ýV is compact and (,f"(X), d, ) is defined as above,
then the class

T) = u* -(X : Wu* is attractor of some IFZS on X

is dense in (rT* (X), d,.

Proof.
Let - > 0 and u ' *(X). The idea of the proof is to find N " N,

W = ,' ..... w1 'and 0 = ! 4TI ... ,.)N, such that:

1) sup c, -j (ci is the contractivitV factor of ,,,;)
2) d-,(Tu,u) < ý, where F, is the operator associated to X,w,jPP

Then, using the IFZS collage theorem (Property 2.3) from 1) and 2) we have:

d, (u, u*)< Z_ 1 I12 =c

where u* is the attractoi c)f 'l IFZS ,X,w, 0, i.e., Tu* -u II
Let us now find w and 0, such that 1) and 2) are satisfied: Let N _ 91,

and x.. xN bean ' -net of Vu], i.e., [ul' '- UN B , where B, B(xxi,
are the open balls of radius • centered at x,.

Let wi : X -- X, wiiX) c B , i = 1_..., N be contraction mappings
with contraction factor ci, with ci < ½. Choose now o, -e 0 and Lji
sup•K- u(x).

Then for 0 z a !-• 1 we have Vula C . B .
We now choose (4p, non-decreasing, right continuous, such that ),(x) }

o(i, Vx [0, 11, and (4i( 1) -o,, i I 1,... N. For example, the stcpfunctions

o(i'xI,.1i satisfy these conditions.
Then

[¢P'-'0 u]C 'X O - i.

But using condition (2.17), we have

N

[r~u]' U V,'(kIpi •,u!') = U, w( 14)i ou]l).
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Now, if the o-dilatation Ds (S) of a nonemptv Closed set S is D' (S
5x X :d (x, S) b, > 0, we can observe that for L) 1

and

w,(S 13, D, (wj(S;)

for 1 i N, -,- closýed sub-et of X. 3.2

We then have:

uU 1), 'u

Using the above equation-, we, then obtaiin

I U U r.

and fwnkc

4. Conclusions

The W /.S mnodel1 repreents a dith'tinlt m1d Pr%)isn1(; a1'pproac h kOcith\ern\
problem for f rat.tal construction and Image encodingý I 11C mntrodurikt n kit
the grev'-level ma '111m h is e to, en Ia rge the claS! (it a ttracthr, Irsvw prt) ke
that thi, ,!ass is, dense in ' X ý, the (p11tuprsniotnioi uia
functions, a space wvhich is, large en1ough t r Image represen tati on gi
the. proofi of the, densit lv kfiw not g~ve an efficient al1gorihin11 to find the
aIppropriate code, but it proi ides a theoretic0 l justification for the' IL//
set approa. 11

OWe bel Ieve, t hat we mighit be aI ,: to )rc LaI\ several Iondtt(ifn "u oft the
model presen-ted here, in order to elýicientlv ,olve the iniverse Problenm WAe
have ex.perimnivnal results comforting our Intuition
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F The present redaction is mainly an account of a joint work [6] with
G. Brown, from the University of New South Wales, and G. Michon,
from Dijon University. The multifractal formalism is described, and a
setting in which it holds is given, as well as the Michon construction of
Gibbs measures.

1. Introduction: the multifractal formalism

Let -v, be an increasing sequence of positive integers. The interval j-, iii

is denoted by I,j. Let ýt be a probability measure on [0, 1 [- Set

-1 log w*idnji)""T,,(Cl) - -1log v, oill,.

where Y" means that the summation runs over the indices J such that
4•([,J) # 0, and suppose that "r(q) .. lim, • r(q) exists for every q in
a certain interval g of R.

On the other hand, let us define 1, (x) to be the interval of the family
11"-,i , .. which contains the point x of [0, 1 , and set, for a - 0,

log k(I(n, WE, : [,1 lim __- =0
n ý log V' I

Then the multifractal formalism, as asserted in various works f 11, 12,
13], and proved [1, 2, 5, 9, 171 to hold in various contexts, says that the
Hausdorff dimension of E,, can be computed in the following way:

dim E0, = inf [o•q - r(q)). (1.1

In the case where -r is differentiable at a point q, and o = r'(qc), we have
dimEI = oTqo - r(qo).
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This article is organized as follows. In the next section, the setting is
enlarged in order to deal with families of partitions the elements of which
can have different lengths. Without any assumption on the measure, it is
shown that the right hand side of (1.1) is always an upper bound for dim EL.
Moreover, the result is a bit stronger, in the sense that we can deal with the
Tricot (packing) dimension instead of Hausdorff's. We can also majorize the
dimension of a larger set than Ea.

The third section is devoted to getting lower bounds for dimensions
once the existence of Gibbs measures is assumed.

In the fourth section, Michon's proof of the existence of Gibbs measures
for homogeneous trees is given.

2. Upper bounds for dimensions

Let ',' 1,ij ý I ,,%, •, be a sequence of partitions of [0, 1 i by intervals, semi-
open to the right. These partitions need not be nested. If x E [0, i[, I, (x)
stands for the interval of the family ýl,,ij<j,,, which contains x. The
length of an interval J is denoted by V. We suppose that, for any x I K. 1 ,
lim ... "l (X)i 0.

We consider two indices dim and Dim which are defined as Ilausdorff
and Tricot dimensions are, but by only considering coverings and packings
by intervals in the family lr,ij ji ., ,C* An account of several notions
of dimension is given in the appendix.

We are given a probability measure Li on '0, 1 F and a sequence A,, ,,

of positive integers such that - .. exp(--1A,,) ) oc, for any rl :- 0.
We define the following quantities:

I

C,(x,, 1 A log (I )• :I",K t
1 .i v.

and
C(X,14) - iMSu~pC,,(X,'W

TA - ,

where T* means that the summation runs over the j's such that p,, (1,,jI 0.
We suppose that C(x, y) is not constantly equal to 0 or oc (this imposes

the growth of the sequence A,:), and set () { (x,'Y •I 2 jC(x,'W '. 0t.
Since C is a convex function, non-decreasing as a function of x, and non-
increasing as a function of g, there exists a concave and non-decreasing
function 4) from 91 to R such that the interior of 0 is identical to the set

(x, 1. 9i 2
, '- (4(x - 0) }. Of course, taking the limit to the left only mat-

ters at the left end of the interval (i on which q is finite. Besides, we assume
that 0 c d and, for the sake of simplicity, that Wp is differentiable on this in-
terval (the complete discussion, in the case where it is not so, is given in [61).
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In the case described in the introduction, where all the intervals of the
partition .v, have the same length, A,• = -v" and the limit exists,
we have qo{x) = Tr(x + 1), where T is the function defined in the introduction.

Set f(cx) = inf [Lx(x + 1) - (p(x)l.
On the other hand, we consider the following sets

{ logi.i(1l(x)) }B, = xE [0,1[ limnsup log W c}

B' = ýx E[O, If lim inf log Wl(x) W cc

V x=xE[0,1[ liminf log ýL(IP,,x)) 1

log I(L,(x)) I

V (= xE [0,1f limsu log l,,,l(x))

We then have the following result.

Theorem 2.1.
1) For any o(, we have Dim B; <_ -(po(- 1) and Dim V; _< 1)-l.
2) If o( < (p'(- 1), then Dim B,, < f (oc and dim B,*, < f (a/
3) If a />- 0o- 1), then Dim V,,, -ý f (a) and dim V,, _< f (a).

Proof. Let us for instance consider the second case (x < 1'( - )), and set
B¢• n - t -: [0, If !t(I "(t)) I "l.(t)i•

We then have

Bl n U n BC0).
13'- . .g' - I I In It -'

Fix o < 13 < p'(- I and 6> f(J3), and choose t > Osuch thatC 1 it, b-
o3t) <- 0. Then

i •t l,, i! " l,• i[•idem

.~iii.

< expA,,,C,,I- 1 4 - 13t).
Therefore

T Y- l",il" -1 o..

So, if "I is a packing of Nl,,, .Bfj(n) by intervals from generations larger
than m, we have " < o. Therefore A (NlT Bo(n)) • 6 (cf. ap-

pendix) and Dim B, < 6. Finally Dim B,,, f(oc .
The other cases are handled in a similar way. I
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2.1. An alternate definition of W

Consider the following quantity:

K(x, y) = lim sup
,_-packing

-" • function K is convex, so the set 0) = {K = 0, is also convex. More-
over, if K(a, b) is finite, then K(a+t, yj -u) = Ofor positive t and u. Therefore,
there exists a concave and non-decreasing function W from 91 to 91 such that

6(= tx, y)l < t(x-0)K
As previously, set f(a) = inf, (oc(x + 1) - yp(x)). In these conditions,

we have the following result.

Theorem 2.2.
1) If or < q)'(-l1), then Dim B <f f(a).

2) If cx > q,'(-1), then Dim Va <- f(kx).

Proof. In the first case (ct < tp'(-1 )), if 5 > f(x) the straight half line of slope

cc stemming from the point (- 1, -5) intersects 0. In other terms, there exists
a positive number t such that (-1 + t, -6 + oxt) E 0. There exists , > 0 such
that, for any E-packing I Ij ý>0 of [0, 1[ by elements of the family j ,,1 ,
we have F, P I)X lflil-,j -< 1.

As in the preceding section, we write

• f -l (lU Bn n).

0,,a. ,~ 41'r1 - ,II7n-1 1 TIrnT

Therefore, if n is such that sup, lIjI <- e, if Lx < 13 < y'(--1), and if

I{ }i is an c-packing of the set Bp(n), we have

<- YI t - y--f-6 I at)

So, Dim B I3(n) _< 6, and Dim Ba <_ f (o.
The second case is handled in the same way. I

Remark 2.3. We could also have defined K(x, y) to be:

lim inf T '(lI)0 I iii-
t --.0

where the inf is taken over the e-coverings (li[ of [0,1[ by elements of the
family {1, 1 j!, i. The function K may be no longer convex, but the boundary
of { K = 0 } is still defined by a non-decreasing function (p from 91 to 91. If f is
defined as above, then a similar conclusion holds by replacing Dim by dim.
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3. Lower bounds for dimensions

The notations are the same as in the previous section. If u and X, are two
functions, the relation u : v means that there exists a positive constant K
such that K- 1u. <_ v < Ku.

Theorem 3.1. Let 0 E 91 and suppose that (p'(0) exists and that there is

a measure lio such that lo([n,i)Then we have
dim E W, (0) = f ((P, (0)).

The measure lie, in analogy with statistical mechanics, is called a Gibbs
measure.

Proof. Consider the follow ing quantities

(', y)= - log * X,.i) I,",-'nj , I,i)

and

C(xy) = hmsupC,(xt).

We have
-lo(i ) C log .. ... o i o(l)

ard

C (X, 1) < 0 C C(x + 0, 1 + (P (0)). 0.

Therefore

< 0} =X 14 <, p(P -X4+0)-4 0

II

Lemma 3.2. As nT goes to infinity, ogIy'!(0) for to-almost every t.

Proof. If cx < (p'(0) then there exists t > 0 such that C(t, at) < 0. Then

Pe {tI (ln(t)) > IIM 1t)l} = Y- •io([,,)

in at -at

idem

= exp A C, (t, xt).
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(this inequality is a large deviation type result [7], as well as the analogous
one in the proof of the theorem concerning upper bounds). Therefore

E ° log ]ntPM)] < 0( < o

1 1o-• n M It}

so, lim inf >ogl o ( for i.0-almost t. The upper limit is treated similarly.

We can now complete the proof of the theorem. It results from the
above lemma first that po (E,, (a)) = land secondly, taking into account the
properties of ýio, that

log i-0(In (t))109ý1 (I -M (0 + 1 (0'() o(0)log If, (t)lI

for ýi'-almost t. Therefore, due to the Billingsley-Kinney-Pitcher theorem,
we have dim EW,,(0 ) 5 f((P'(0)). The equality then results from the previous
section. 0

As a consequence, the Hausdorff or Tricot dimensions of all the sets
EU,, B, V,,, B•, and V* are equal to f(cx) under the same conditions. This
generalizes some results of Besicovitch [31, Eggleston [10], and Volkman [28]
on the dimension of sets defined in terms of frequency of digits. This also
accounts for some results in [9] and some work on 'cookie-cutters' 11, 5].

4. Existence of Gibbs measures

In this section we suppose that the sequence 1n,j i -_,,, i ... of partitions
has the following properties: each element of the (nr + 1)-st partition is
contained in one element of the ni-th one, and each element of the Tr-th
partition is split into a fixed number p of elements of the (n 1 I)-st one.
Obviously, this imposes -vn -- . We are going to use another indexation
of the intervals ýlnj: the .ervals 12', will be denoted by li,i,, with
0 _ l1 ,i 2 <p,insucha way that li,i, c lI,;andsoon.

Let A be the set of words over the alphabet 0, ..... - I . The
concatenation, just denoted by juxtaposition, endows A with a semigroup
structure. The empty word, which is the unit, is denoted by c. The set
of words of length ni is denoted by An; it indexes the elements of the n-th
partition. If a d A, instead of writing p([,,) we shall simply write ac(a). In
these conditions, for every a E A, we have F.-0, b. •, i(ab) - ;iaf.

We suppose that k' is quasi-Bernoulli, i.e., there exists a positive number
M such that, for any a and b in A, we have M 'ýi(ahýi(b) 4 1(ab) -
Mi' (a) i' b).

We also define a mapping I from A to 'Y: [(a) 1,, 1. We assume that t
is almost multiplicative, i.e., there exists a positive constant L such that, for
any a and b in A, we have I -1 l(a)Uh) ! lah) ! [ la)lMb).
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Under these conditions, G. Michon [21,22] proved that the 'free energy'
exists and that there are Gibbs measures. We are going now to give his proof.

Proposition 4.1. For every x and Ij in 91, the ratio

-log T ~f-'ic

has a limit, denoted by C(xy), as n goes to infinity.

Proof. By replacing I by j-1 ta4, it is enough to consider the case x 0 0, y
-1. Set

Zv= - taica) ,and C, = -log(Z,).
Ct

We have

Z inL(a)ýt (a) [ab) (ab) ( L(b).
(I. =•GA - t. a/ib} pia}tb)

Therefore, we have 'log Z .,, - log Z,. log Z,,i log(ML ). It results that
C,, has a limit C as n goes to infinity. Moreover, we have C,, - C
?logML. I

Let us notice that if we set [.,(b} - L( b) L.a), (for a and b in Ai), we
have 1I.2 ,,(b}[,,{c) L t,(bc I 2 l[,,(b),{(c) for u, b, and c in A. Similarly
for La.

For any a in 1, and s in 91, set ,,Z -',, ( (,,b) (b), and

Z,(s) T ,Ze"" (,Z.1)

It results from the above remark that, for any n. and for any a, we have
K--1,Zvi <_ Z, j K, Z, with K [ IM. Therefore lime., 1 loge, 1Z,,
does not depend on a and is equal to what we called C in the proof of the
above proposition. Moreover, ,- log,,, Cr . log K and K 2,exp C
,,Z7 -< K2 exprnC for any n. So the series (4.1) converges for s - C. From
these last inequalities it results also that

K 2  K2

I 4expC s) ,s I exp(C- s}

Theorem 4.2. For every x and ij in 91, there exist a constant c and a measure
ýL,, such that, for any a in A,,, we have

c a l(-a)1,- .w • ,ja)Cfl C ct(a)' " l(a)}4 e ,
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Proof. As previously, it is enough to consider the case x 0, - 1.
Let us denote by t, the following mapping from F0, I [ to Nt: t, (t -

I, (t)j. Let us define a family of functions from ý0, 11 to 9Q in the following
wayq., = tc+ e-s+ t2C 2 s... Obviously, we have f (p, dci -- Z, (si. This
allows us to define the family P, i (s C) of probability measures
on A0, 1].

If a C AJ,, we denote by an (C <- j n) the word formed by the i first
letters of a. In these conditions, we have, denoting PI 1,, i simply by P,! c),

Z' (s) P,( ) ( - Lt(a) I [(a,)e tu1, L' C 1 . ..

In other terms

P, (u) - it s) Y I(Cl,) I - (11 ( !

When s goes to infinity, P, has a weak limit point M at least But. \t',
know that, as s goes to infinity, so does /, ý s I and that the ratio 7,:, s <
stays between K 1 and K. This means that we have, for a I

1, f ' l1
K -5 - - . K-.

Remark 4.3. The case' of Ries/ products [S) is not handled by this proof.

5. Example

One of the paradigms of mutifractality is the mul tinomial meauIrCs (1f which
we give a generalization in this section..

Let X be tile simplex (x , - ..... - ...... \,. , X for
_- 1 .. 1,, (P - 2). Consider a sequence ni,. m_ , T,• . of element., of X X.

We assume that this sequence has a conltinulous mneasure of repartition L..
This means that there exists a continuous probability measure ,I. on the space
X . X such that, for any open set U X • X the boundary of which is of zero
L.-measure, we have

1hllIr # T{ , O - el•rf, ,[] U k (LI).
;11 , tj I•

Moreover we asum.l1le that tile boundary of X - X is of zero ,&mrneasure.
As in the section concerning the construction of Gibbs measures,

we consider subintervals of ý0, V indexed by words over the alphabet
0,1...,. p - 1: 1, - ý0,1[,and the length of l, . is 1,,, ..... , X.
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Define a measure -t on 10, 1 [in the following way:

p-i(I .... }= H m1 ,'×.

It can be verified that we have

lir Ilog ii(l.. I .

= log v,' )d&(u,v).

So we have an explicit expression for C(x,y). On the other hand, if

we keep the same 1-n, but if mr is replaced by ... , (hrtý., , ,(where to

exponentiate a vector means to exponentiate each of its components) and
perform a similar construction, we get a measure v,, which is the Gibbs
measure corresponding to tx, y). Therefore in this situation the multifractal
formalism holds.

6. Appendix: Hausdorff and Tricot dimensions

6.1. Hausdorff dimension

Let F be a subset of [0, 1 ! and a a positive number. Set

l iý lim i nf i E U I I'

If Hi(0 ) < oo then 13 a H,(L) - 0. So there is a cutoff ae such that

a ,c a -H(E)-oo and a > o Hc(t ) 0.

This number ao is, by defirition, the Hausdorff dimension of Y.
Another dimensional index is of wide use. Let N, (E) be the minimum

number of elements of coverirgs of L by intervals of lengths less than
and set

log N•ýA~lI) = lim sup -oN~

This index has been considered by many authors and bears several

names: Bouligand-Minkowski dimension, entropy dimension, logarithmic

index, box dimension ... In fact these indices differ in a general metric

space. Obviously we have din- E. AlE I.
The following observation gives a way of vetting a lower bound for

the Hausdorff dimension: if there exists a measure pi satisfying a Iitlder

condition of order a (i.e., pll ) C1l[lj for every interval I) and such that
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ýt(E) > 0, then dimE >_ o. Indeed if llI is a covering of E by intervals,
we have

0 < ýI(E) <_ T 010~ <_ C> T Iil

wich proves the above assertion. In fact a refinement of this argument givet
the following lemma due to Kinney and Pitcher and, in a more general form,
to Billingsley [4].

Lemma 6.1. Let p be a probability measure. If

if(l) >0 and E 1 t~lim logil) >i•}
It l\'ýt log 1! J

then dim L > o.

6.2. Tricot dimension

An c-packing of F is a collection of mutually disjoint intervals intersecting
F. The following property of box dimension can be found in [2o]:

A(L)

inf {c \ lira sup - l, being an e-packing of E, 0

sup { i lim sup 1-- I I,'! being an .-packing of I x,

One drawback of the box dimension is that it does not distinguish a set from
its closure. For instance, it assigns 0 to the dimension of the rational. This-
led Tricot 120, 25] to introduce the following concept:

)im n - inf{supAtl I,, U I}

O(bviously dim I I )im U. A related notion has been introduced by Sullivan
[24]. An account of this notion of dimension and of connected outer measuref
can be found in [27).

The index Dim has the same regularitv properties as Hausdorff dimen-
sion: if F F then Dim F ý! Dim F, and, if I is the union of a sequence 'I ,,
of sets, then Dim I sup,, l)im I

7. Final remarks

There are many developments which we are not going to discuss about
multifractals, in particular concerning further interpretations [15, 16, 18, 19,
201 of the function f(o) especially when it assumes negative values.

In a recent work Muzy et al. (231 have adapted this formalism to handle
another situation by replacing indicator functions of intervals by wavelets.

Finally, the thermodynamical formalism has been used to study har-
monic measures 114].

1II I n i llli ili



18i5 N1tilt ifractal ineasures}

8. Bibliography

[I] T. Bedford. Applications of dynamical systems theory to fractals: A
study of cookie-cutter Cantor sets. Preprint, TU Delft (Netherlands).

[2] T. Bedford. Hausdorff dimension and box dimension in self-similar
sets. In V. Binz, editor, Proc. conf. Topology and Measure, GDR, 1987.

[31 A.S. Besicovitch. On the sum of digits of real numbers represented in
the dyadic system. Math. Ann., 110:321-330, 1934.

(4] P. Billingsley. Ergodic theory and information. John Wiley & Sons, 1965.

[51 T. Bohr and D. Rand. The entropy function for characteristic exponents,.
Phvsica, 25D:387-398, 1987.

16] G. Brown, G. Michon, and J. fleyriere. On the multifractal analvsis of
measures. 1. Stat. Ph Ys., 6t)(3/4). To appear.

[71 11. Chernoff. A measu re of asymptotic efficiency for tests of a hypothesis,
based on the sum of observations. Ann. Math, Stat., 23:4143-:;)7,192

[8 1 1 Collet. Preprint.

[9] P). Collet, 1. L. Lebowitz., and A. l'oriio. The dimension spectruml ot some
dynamical systems. 1. Stat. fPhYs., 47:609-t)44, 1987.

[101 11.G. Eggleston. The fractional dimension of a set defined by decimal,1
properties. Qua rterlv, J. of M~ath. Ox )tord, pages 31 46, 1,94P).

[11] L. Frisch and G. Parisi. Fully developed turbulence and interinittenCV
in turbulence, and predictability in geophVsical filuid dy~'namics and
climate d ynamics. Ini M'. h i, editor, International sch(ool ot phyvsic
"Fnrico Fermi", Course 88, page 84. North I lolland-.I.Sev\'er Sýciecel
Publishers, 1(98;.

1212 TC. f falsey. MJ I fenseni, 1.1' Kadanolt1, 1. l'rocaccia. anld B I '-11ran111an.
Fractal measures and their singularities! thet characteri'Sation Ot strange
sets. Plivs. Rev A, 33:1141, 114M.

[131 fl.G.E. f ientschel and 1. Procaccia. The infinite number of generaliied
dimensions of fractals and strange attractors. f'hysica, 81):43R, P4881

1141 N. Makarov. Preprint.

1151 13.11. Mandelbrot. A class ol mul.1tifractal measures with negative (latent)
vaue for the dimension f(o) In Lucia no l'ietronero, editor, JFractals:

physical origini and properties (Fi ice, f988). Plenum Press. New-, Nork,
1989.



{Peyriire I'm}

[16] B.B. Mandelbrot. Limit log-normal multifractal measures. In Errol
Gotsman, editor, Frontiers of physics: Landau memorial conference,
pages 91-1 22, Tel Aviv (1988), 1989. Pergamon, New York.

[17] B.B. Mandeibrot. Multifractal measures, especially for the geophysicist.
Annual Rev, of Materials Sciences, 19:514-516, 1989.

[18] B.B. Mandeibrot. New "anomalous" multiplicative multifractals: left
sided f (a) and the modeling of DLA. In Condensed matter physics, in
honour of Cyril] Domb, Bar Ilan (1990), 1990. Physica A.

[19] B.B. Mandelbrot. Two meanings of multi fractality, and the notion of
negative fractal dimension. In Soviet-American chaos; meeting, Woods
Hole (1989), 1990. American Institute of Phvsics.

[20] B.B. Mandelbrot, GIJG. Evertsz, and Y Hlayakawa. Exactly self-similar
"left-sided" multifractal measures. Phys. Rev A. Submitted.

[21] G. Michon. Mesures de Gibbs sur les Cantor RWguliers. Ann. Inst. Henri
Poincartý. Submitted.

[22] CG. Michon. Une construction des mesures de Gibbs sur certains ensem-
bli-s de Cantor. C.R. Acad. Sci. Paris, 308:315-318, 1989).

[23] J.-F. Muzy, F_ Bacry, and A. Arneodo. Wavelets and multifractal formal-
ismn for singular signals: application to turbulence data. Preprint.

[24] D. Sullivan. Entropy, l-ausdorff measures old and new, and limit sets
of geometrically finite Kleinian groups. Acta Math, 153:259 -277, 1984.

[25] C. Tricot. Stir la classification des ensembles Boreliens dei'niesure de
Lebesgue nwlic. PhD thesis, Facult6 des Sciences de l'Universit&6 de
Gen~ve, 1980. No. 1921.

[261 C. Tricot. Two definitions of fractional dimension. Math. Proc. C'ainbh.
Phil. Soc., 91:57-74, 1982.

[271 C. Tricot and S.j. Taylor. Packing measure and its evaluation for a
Brownian path. Tran.,s. Amer. Math. Soc., 288(2):679-699, 1985.

[28] B. Volkman. Ober Hausdorffsche dimensionen von Mengen, die durch
Zifferneigenschaften charakterisiert 11, Ill & IV. Math. Zeitschr, 59:247-
254. 2 ý9-276 , 425-433, 1953- 54.



Applications of Gabor and wavelet expansions
to the Radon transformt

David Walnut
Department of Mathematical Sciences
George Mason University
Fairfax, VA 22030 US;A

a X\'e investigate the rela t ionship betCO HeICth RaIdon t ran k rm and v r-
fail) Phcahe SPake localiz~ation function,;, narnwv the contintiouis Gabor and
%vavelet transforms. We derive inversion formulas for the Radon transform
based on the Gabor and wavelet transform. Somne ot these forrmulas, give a
dirre(d recteiptruction oif tor of.1 -'I fromn the Radon transformi data. Others.
,ho% how the Gabor and kvavelet transformsý ot or Y I caIn hek recovcred

directli, fromt the Radon transform data. We kiuggi-t wýav toi whiw h the-~e
formi ii aý can lead to eftice n t reýo ost rii t ion algorithm anMd Can1 11e a pp1 ed

n( use~lt redt ic 1 ion reu mnJ st cted IniagL es

1. Introduction

The Radon transtorin is a mathematical tool which ik used to describe an
image (which may be thought of as a function of several, typicallY two, vari-
ables) in terms of intensity averages oiver lines or hyperplanes, in several dif-
rections Ty pically such a Verdges can be easily measured while tile function
itself is inaccessible. In comnputeri7ed tomographyv (CT) scanners, for examn-
pie, one wishes to determine thle tissue density function in a cross-section of
the humtan body from non-invasive measurement,;. The basic problem is the
accurate recovery of thle unknown function or at least relevant features of
the unknown function in a stable fashion and requiring the fewest possible
measurements. In addition to medical applications, the Radon transform
has also been used in astronomv, electron microscopy, optics, geophysics 17).
The Radon transform has recently been proposed as the basis of a recovery
instrument for space plasmas, and in determining the chemical composition
of flames 1231.

tniv, piper is a repor (iof joint work being tiindertaken by the auithor together with Carlois
tBercnstvin of the University of Maryland.
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JS. ltvrne.% et a/. ("cN. ), Prothahilisrit andl Siocacitsi Mlethods ile Anali-sits, icti ith jippiiealln Im 187-205,
© I 992- Klui.,er Atadenen Pidbhehe'rv. Prin ted in tile Ne'therlands!.
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Given a function f defined on 91d, its Radon transform, Rf consists
of the average of f over all hyperplanes in 9Vd. For example, the Radon
transform in the plane (d = 2) would consist of the integrals over all lines
of a function defined in the plane. In planar imaging, these averages can
be found by measuring the attenuation of a beam passing through a two
dimensional slice of the body. In some applications, one also needs to
consider integration over k-planes in 91d. For instance, when d = 3, NMR
scanners can be modelled in terms of the hyperplane Radon transform, but
emission tomography leads naturally to integration on straight lines. This is
usually called the X-ray transform. For simplicity, the rest of the discussion
in this paper will be about the hyperplane transform. In this case, the
hyperplane averages of f are organized as follows.

ROf(s)- [ f(sO+ y)dy

where 0 E Sd-1 and s c 9i
The adjoint of the Radon transform is commonly referred to as the

backprojection operator and is defined as follows. For a function ii defined
on S- , 93,

R" h(x) s ' I.h(0, x.0)dd

with x : V'i.
In even dimensions, the Radon transform is non-local in the sen,•a

that the recovery of f(x) requires knowledge of the integrals of f over all
hyperplanes. By contrast in odd dimensions recovery of t (x) requires only
the integrals of f over hyperplanes passing through a neighborhood of x. This
is an important consideration in medical imaging as one wants to expose the
patient to as little radiation as possible.

An approach which tries to preserve locality in even dimensions has
recently been proposed in [9]. This involves the recovery of Af where
A = l/27T(-A)1 2 where A is the Laplacian. In even dimensions, it is pos-
sible to recover Af(x) from integrals of f on hyperplanes passing through
a neighborhood of x. Since A acts as a differentiation operator, the image
Af tends to highlight edges in f( ), i.e., regions of sharp changes in tissue
density, and also to reveal more clearly details such as small blood vessels.
This approach is known as local tomnography' or Lambda tomography [18, 91.

The Gabor transform, a variant of which is known as the short-time
Fourier transform, was introduced in 1946 by D. Gabor [13] as a tool in
communication theory. It and its variants have long been used by engineers
in digital signal processing applications. More recently, the Gabor transform
has been used as a tool in image analysis, compression, and segmentation
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[6, 22]. The transform compares a given signal to shifts and modulations of
a fixed window function, g, that is, to

gxi(t) = e 2 ri.(t-x) g(t - X). (1.1)

In this way, the transform gives a time-frequency picture of the signal. Gabor
used a Gaussian as a window in order to achieve the best possible joint
localization in time and frequency. With the short-time Fourier transform, a
box function is used as a window. Discrete versions of the Gabor transform,
known as frames [8], exist which permit stable and efficient expansions and
reconstruction of functions [4]. However, such developments are necessarily
overcomplete [1,2]. Recently an orthonormal basis closely related to fiames
of Gabor functions has been discovered [5]. Such bases are known as Wilson
bases and consist of linear combinations of pairs of Gabor functions. The
Wilson basis functions are real valued, and their close relation to Gabor
functions permits easy computation.

The wavelet transform, introduced in [16] has been an increasingly
popular tool for signal and image analysis. The transfui m compares a signal
to shifts and dilates of a fixed function, the mother wavelet 4', that is, to

ýa.b~t) = a d 2 i((t - b)/a) (1.2)

with a C 'R and b E 91d. As a time-frequency localization operator, the
wavelet transform is fundamentally different from the Gabor transform. By
using dilations the wavelet transform can achieve arbitrary fine time local-
ization while still giving a complete representation of the signal. Remarkable
wavelet orthonormal bases have been constructed consisting of smooth and
rapidly decaying (even compactly supported) functions. The expansion and
reconstruction of a signal in such a basis is very efficient numerically, and in
fact is faster than the FFT.

In this paper, we investigate some of the connections between the
Gabor and wavelet transforms and the Radon transform. We will derive
inversion formulas for the Radon transform based on the Gabor and wavelet
transforms. One type is a direct inversion formula based on the development
of Ref(s) for each 0 in a series of the form

R (If(s) = . .. _h . .. s (1.3 )

where the hn,, can be a collection of Gabor functions, a Wilson basis, or
a wavelet basis. In the case of Gabor or Wilson functions, the advantage
lies in the fact that the basis functions are known explicitly so there are no
problems of interpolation in the reconstruction scheme. In the wavelet case,
the basis functions do not in general admit a closed form analytic expres-
sion, so numerical approximations must be used. In this case, however, the
computation of the coefficients is extremely fast.

I
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Another type of inversion formula presented here is based on the
method of filtered backprojection which is essentially an implementation
of the formula (see Proposition 2.4)

K* f = gR(k Rf) l1.41

where R'k = K [19]. The idea is to compute (1.4) for functions K which
approximate the 6-function. Such K are often referred to as "point-spread

functions." Since both the Gabor and wavelet transforms can be realized as
convolution operators, it seems natural to ask whether one can recover these
transforms directly from the Radon transform data. In the Gabor case, the
kernels K are modulated Gaussians and in the wavelet case are dilates of a
fixed mother wavelet. In Sections 2 and 3, formulas are derived which in
some cases allow the recovery of the Gabor and wavelet transforms directly
from the one-dimensional transforms applied to the data Ra f for each 3.

In both cases, the formulas are local in odd dimensions and in even
dimensions Af can be recovered in a local fashion. Also, the formulas allow
the selective recovery of f or Af at certain frequencies (the Gabor case) or at
certain resolutions (the wavelet case). This feature can be useful in the noise
reduction of tomographic images [211.

In this paper we use the following notations. We denote by 91", d
dimensional Euclidean space and by N"1 its dual spacc. The Fourier trans-
form in !'R" is defined by f(LýJ -f cN-, C)"'4- t (x) dx whenever i is integrable
and as an appropriate limit when it is not. We denote by Sg.` I the space
of infinitely differentiable functions which, with all of their derivati, ýs, de-
cay faster than any polynomial. This space is commonly refered to as the
Schwartz space.

We begin with a review of the definition and some basic properties of
the Radon transform.

2. The Radon transform

2.1. Definitions and preliminaries

Definition 2.1. Given f S(ý.' 1i ), we define the Radon transform, Rf of f bv

Rf (0, s) - Raf(s) vs f f(sO i qfI(it

where0L S1 1,s 91.

Definition 2.2. Given h a bounded continuous function on !Q, we define for
each 0 - S - 1, the operator R' by

R"h(x) = h(x 0).
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For h bounded on S"- 91, we define the operator R' by

Rh(x) =JSd I

Note that given f E S( M1') and h E S(11), we have that

tiRo f(s) h(s) ds = Jo f (sO i gj)dq h(s) ds

f (. x) h(x - ) dx f { (x) RO h(x) dx.

Also, for f c S(93"), and hF & SSd I . 91), integrating the above over
SI- 1 gives

Is I fRf(0 s)h (Os)dsdO = f1 (x)ROh(x)dx.

In this sense, R* and R' are the formal adjoints of RO and R.
We now collect some basic properties of the Radon transform whose

proofs can be found in any standard text on the subject, e.g., t191.

Proposition 2.3. Let f, g - S(-1 ). Then for a.e., 0 and s,

Ro(t* g)(s) =Rof* Rog(s)

where the convolution on the left is in N" and that on the right is in 91.

Proof. Suppose that f, g ,e S(9' 1 j .

Ro(f' q)(s) { f it)g(sO + q-t)dtdij

tl { f(TO4 t') f ((s - )O t, t') dtj dt' (IT

{ Rof(r)Rog(s -- T) dT Rof* Rof (s).

Proposition 2.4. Let f • S(!'R(", g l -'(91). Then for each 0 U S"

(R*g)* f R- R" o ( R f) (2.1)

where the convolution on the left is in !'R" and that on the right is in 91.
If9 ( (S,"-I , .gR!q), then

R# g * f R (g! * R f. (2.2)
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Proof. Assume that f E S(9il). For 0 E Sd- 1 fixed, let t = rO 4 t' and
x = sO + x'. Then

g(t 0) f(x - t) dt = J g( r)f((s - Tr)O + (x' - t') dTdt'

= ~g (T) f((s - T)O + (x' - t')) dt' d-r

= j g(r)Rof(s - r) ds = g * Rof(x - 0).

This proves (2.1). Integrating the above formula over 0 ý: S" - 1 gives
(2.2) forf - S(IN). I

2.2. Inversion of the Radon transform

Proposition 2.5 (The Fourier Slice Theorem). Let f : S(9d. Then for
0 ýý Sd- 1 ,y N 9,

(Rof)A(y) = f(yO). (2.3)

Proof.

f(x)e- 2ox 1 i(X YO I dx = f(YO).

I

Corollary to 2.5 (Fourier inversion). Let f - S(I"). Then

f (x) (Reof )^(r) C 2ni{x 0i)111~d"-1| d~rdO. (2.4)

where S(- 1 denotes the upper-half sphere in IN'.

Proof. Writing the standard Fourier inversion formula

f(x) = Jf)4c27" t11d

in polar coordinates and using (2.3) gives

f W = (Ref)A(r) e 2 ,n(x •)r,d- 1 dr dO

= J (ReofA(r) e 2
niTx t"lri'i- 1dr dr dO
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since (Rqf)A(r) = (Ref)A(-r). i

Definition 2.6. Let f c+ S(9id), a c 91. Then we define the Riesz potential
operator, 11 by (I[f)A(&) =

If a = -2, then I' = -1/(27r) 2A, and A is the Laplacian. If a = -1,
we refer to I- as the Lambda operator, A, which is important in local
tomography. Note that Af = 1/271 (-A)1/ 2 f, see [9, 18, 19,7].

Proposition 2.7. Let f E S(Md), a < nr. Then

f - II R -l a f Rf. (2.5)
2

Proof. See [19]. I

Corollary to 2.7. If a = 0 then

1) if d is even,

fRRlla0 - I RRf f
2(2 7 ri)d-

2  -

2) if d is odd,

2(272 i)d-1

where H is the Hilbert transform on Il, i.e., for y M,

(Hf)A(Y) =- 1.9(YM(Y) (2.6)
27ri

(a is the signum function) and a, means differentiation with respect to s.
If a - I and d is even,

Af R'f - -I R oa(IRf. (2.7)
2(27Ti)d

Proof. For d even, d - 1 is odd, so for any h. ( S(IN),

I-dh(s) = ..1Yid-1 h(iy) e27"•s ds

= 1/(27Ti)' 2 IN a(-y)/27Ti. (27iy)'- 1 h(Y))e 2 "Y' ds

= ]/(27T.)d- 'Ha- 'lh(s).

Taking h(s) = Ref(s) gives 1) and 2).
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Similarly for d odd,

11 h-dh(S) = ]/(27Ti)d-lad- lh(s).

Taking h(s) = Ref(s) gives (2.7). I

3. Radon transform inversion based on the Gabor transform

3.1. Background and preliminaries on the Gabor transform

Definition 3.1. We define the following operators. Given a function fi
defined on N",

1) E it( C2"iuth(t), , !d.
2) Ih(t) h(t - x), x .
3) D,.h(t= h,,(t) = U-d 2 h(t/a), a > 0.

Given f z S(d), and ha real-valued even function on 9 1" with h11ý2 -
1, we define for x - 91" and L ,: .N,

h'jl.t) c e2-tiL t..- x,ý4 .i. < ).

The Gabor transform of f with respect to 1 is defined by

f [ (g)l h,j- (1)) dij -- I L h * f (x). (3.1)

In what follows we will in general take the analyzing function h to
be the Gaussian or a scaled version of the Gaussian. Therefore we define
g (x) c" '''• for x , N". We use the same notation for the Gaussian in
different dimensions. The dimension will alwavs be clear from the conte\t.

The following facts are readily proved (4, 17].

Proposition 3.2.

{ Y )fhýh;fl(x,L 2 dxdL flt( 2 dt'.(3.2)

.I h: -. X,! '
T ,' (h: f)lx.L) I. ( h)d(x-x',: f)L dX,) Cx2 L 31 3

41'Ah; x',L) -, L') dx 'dL'. (3.3)

(3.2) means that 4rd' is an isometry on L2. That is, 4d' is an injection
from L2 O ") into 12 (94 . !ý") and is invertible on its range. The inver-
sion formula (3.4) is valid as written when f has sufficient smoothness and
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d eca v Otherwise the integral oin the right must he interpreted as an ip-
propriate limit. This inversion formula is formally 111,110og01l to Utli' Fourier
inversion tormula.

We nowv give a brief exposition of somle of the sampling and interpola-
tion properties of the Gabor transform which will be useful Ilater onl. Details
and proofs may be found in the cited references.

The reproducing formula (3.3)) characterizes the range of the m'lap T
It shows, that this range is very small and hence that A' a"f contains' a lot of
redundant information about f. This fact has been exploited ill I10, Il1 to
show that in fact t , . N l is completely' recoverable from any sufficientlY
dense sampling of its Gabor transform. This has also been1 shown in o0e
contexts for regular lattices 14, 17, 20]. The necessary denlsity Ot the lattice
depends onlyI on the analyzing function hL and niot onl T. For example, it
is known that when h is the G~aussian, then any S.N can be recov-()
ered completely from the samples 41 a oý t 01 2, Tii with T-, -, 2" inl t he
following sense [4, 5].

Proposition 3.3. Given f Si'' 1, there is a function 0 With L~pOnenltlal1
decay in time and frequency, such that

f(( Y- Lo III n 2,7,? 7 ,z , I

where the sumn converges abSOIlutel and unitormly.

Proposition 3.3 sayvs in particular that thle Collection l .I !~is a
frame for the Frechet space S ' 1 114, 121. In tact, (I and o7 are v ery kc0los In

many senses (in particular, in the I and I ' es)and

L Y 41' ai I 1171 2 , il I o x A3.

is a good approximation.
In the case ' 1, even more canl be said. In [5,it has beenl recently.

shown that the collection

he, . j x TiI fl t

*I n (O .n I Q 2.,,,m f 01 I'

is a noni-orthogonal basis for I 2fi and an Unconditional basis for S(901
(see also [12, 15, 201). This basis canl be rewritten in the following more
convenient way.

WX, gl 1 n) 1

4 e v"2g ( n/2) cos (2-ltfx) f n even; ri ,-

he,, i\/ f2(ix - n,/2)sin(27ifx) n. ~odd; T1 Z
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As before,

( OnEZ.

is a good approximation. The advantage of such a basis is that a real-valued
function f is developed as a series of real-valued functions. Also, its close
relation to the Gabor functions allows for easy computation.

3.2. Inversion formulas

Proposition 3.4. Let A > 0 and let the collection of functions ýg', be
defined by

'\ - , X ' 1'2n)-r., .q\x" ,A 12"), n~ t 2•.

2(, " 2 x(x ti 2 ) cosI2-L,\' "f) ri neven; Ti- .
ge,, 2, (x N 'Ti 2)sin(2,-iA •'f x) f 1 nodd; , Z

Then 'g ' is an unconditional basis for S(9i). Moreover,

.0" . 21 T ,Z.

2 1 \(21\ , , I . I \l 2,g1 f T1 even; -1

,, 1.i'21 , .,, 2( , .'( I ', 2'9 I' .n odd; T "

Proof. The first part is merely a dilation of the Wilson basis defined previ-
ously. The second part is an easy computation.

Proposition 3.5 (Inversion with Wilson bases), let t S(NTa I, and
Suppose that for each 0 ý S1

R,,f(s" T.I ( I3.7)

Then

1) If d is even,

f(x) 1/(2rni),1-2 Y-c '"(O)Ha '( 'p,,,(x OldO (3.8)

and
A / )d - c (0 a ('

Al = 1/(.7( Y Y- •.(x 0) dO (3.9)
f , I -Z
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2) If d is odd,

CC,, -(0)3i1 g", (x 0) dd (3.10)
f 0 TIt Sa

Proof. Note first that since the sum in (3.7) converges absolutely and uni-
formly and in L2,

Ref)~r( L L (gO() <,ýO (1)3. 11

Bv (2.4), we have

f(x) f f (R,, f) "'ir) c' '-T [ 0 r.d 1--1 dr d13
CC(• ," T 2I .0 o rld c xr ld Id d

1'. ( t Ujrj f \ ) I

f1 0 d• " 1'

1 : 7 j: li2r iia 2 i9 J ce,, (d)tll0 I9}, 01d01

This proves (3.81, and (3.10) follows similarly.
To prove (3.9), note that

Af~x) C !,f,} 2-lil x

r(Rof)A' (r) c 2 :'''', 1 ' l dr do
- d hi, O, rdro

J (Rof)',(r)c2 ,rrd drdO.

The result now follows just as in the proof of (3.8),

Lemma 3.6. Let A < 9d, A -, 0. Then

Ro (FIg )(s) N1 ý2 -,A ',LA e"\ L i. t. g,(s). (3.12)



I~ I In I It

Proof. \With L ( L .o9 1, eh

I ,. 0 O d , I c 2 j It c

i 0

.2"1 2 C " -

tk)b.cr\ing that L' 2 2 , complvtc, the prt I

Proposition 3.7.

1 ) [or tL tvcn,

whturtc U t'm ~tt, t hie' I hert tran-tOori.t ..

2) For d odd,

Proof. Both (a) and (hb) hollow Iom the invtersion torwltiaý in the corollarv
to l'ropolion 2-7 and from I t11ma . I

Corollary to 3.7. [nr d even

K c• ' ( I ao~l• q\)0 130

Proposition 3.8 (Filtered backprojection). Let f - SIN" h, ' 0.

1) It di is 'vtll,

C71 , I) A1 c2,R' I f~ tllx &! 2(2niP' 2X • 'i,
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2) If disodd,

•4 d1 ( gA' f )(x ,'ý ) X12 X 2(-CA IL I "2 (27i) d-1I

e,' ' .la d-~lE, Rof(x O) dO

Proof. By Proposition 3.7,

= ,' 2C-A !LKR#(cT\L.e )(x).

By Proposition 2.4,

Sdl(g,\f)(x,) = ELq, f(x)
S/1 2C c ,\ I ! u -

et k C7 '\ L :' 1 -E L _og.\ R"f R f(x 0 1d3.
,S ,l I

From this the result follows. I

Corollary to 3.8.

1) If dis even,

41 g,,,. A f I (x, c) 21 C

2( i )'I

0 i ''Lk (r )*1 0~~xRf~ z,Lý t3)ch

where oc, ('j)(27tiP.
2) If d is odd,

1 27'4''" ( ql a f i( x, I -, 2 I2 ti-) "i: i A 1' j j

0 1

0(i J en; , 'IL 0 (L . 0) 1 ( - - R . ,L..O)dO

where o( 1) ((27TH'.
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Proof. Both (a) and (b) follow by the same argument as in Proposition 3.8
together with an application of Leibnitz's rule. I

4. Radon inversion based on the wavelet transform

4.1. Background and preliminaries on the wavelet transform

Definition 4.1. Given g a real-valued, square-integrable radial function on
9gd which satisfies

J0 Ioc(s) 2 !/sds < oo (4.1)

(where g(5,) = 6eML), we define the wavelet transform of f by

V (l(g; f)(11,N') j f(t) e-d 2 g(e-t - v) dt ý f* D,.- g(e"v) (4.2)

where u r- .91 and v E 93d. Any function satisfying (4.1) is called admissible.

As with the Gabor transform, the following are easily proved [161.

Proposition 4.2.

Iq) ( (g: f) (1, v) 2 dudv 16{(,s)1 2 /s ds J f(t)f2 dt. (4.3)

D IdI(g;g)(u - t',v -- e"' -"v') du' dv'. (4.4)

f (t) D (lg; f)(u, v) e -"d,. g(c " - v) ditdv. (4.5)

When d = 1, it is possible to construct compactly supported, dif-
ferentiable functions ij such that the collection {2i 2it,2(x - k is an
orthonormal basis for L2 (91. Computing the expansion of a given f in this
basis is extremely fast numerically [31.

4.2. Inversion formulas

Proposition 4.3 (Inversion with wavelets). Let f E S(9jd ), and suppose
that foreach 0 E Sd-i,

Ref(s) = E C,'k(e)1ik(S) (4.6)
iEZ kEZ.
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where lPj~k(s) = 2ý" 21ý(2is - k). Then

1) If d is even,

f(x) = I/(2lTi)d- 2  f., C'k (O)H. d-i.Pik(X 0) dO (4.7)

and

Af(x) = 1 /( 2 7fi)d - Cik(O)a'lpk(x . 0) dO (4.8)

2) If d is odd,

f(x) = I/( 2 711d1 Y j { CTk(0)
1d-41,k(X 0) dO (4.9)

Proof. This follows exactly as in Proposition 3.5. I

Lemma 4.4. Re(D,, g)(s) = &(d-1 2Dc,,Rog(s).

Proof.

-ud '2f g((e-(sO + y)) dij `1 2 J g(c-"sO+c "tB))dy

cud 2e-"J g(e-"sO + 0)) d i

e 2 D .,, R g(s).

Proposition 4.5. For g E S(911),

De,.g(x) = 1/2e- id -11"2 D,. 1l-dRog(x - 0)dO.

Proof. Note first that for any h c S(9•), a E 91,

I'D,,, h(x) = f IYn -I(D,.h)A(Y) e~n'" dy

= e"/ 2 1,Y IyI- (euy) e27T Yx dy

= ee-U/2 u IYM -t( y)e2 riv(c ")dy

= e'",De. I'h(x).
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Thus,

De,,g(x) = 1/2R#I-('lRD, g(x)

= 1/2e"Ld-l /2 R# I1-D URg(x)

1/2e-t(d-) 1/2 R# De- i1- -Rg(x)

= 1/2e-,(d--1  2 f D•.,-dReg(x .0) dO.

I

Lemma 4.6. Let g c S(SR) be real-valued and admissible. Then for any
integer j > 0, a•g is admissible. Also, if g :7 S(.R•d) is a radial function such
that RO (s) = g(s) for all 0 E S"-l, then q is admissible.

Proof.

[{O g) A (TY 12 / -y d y = (2 -ni 2jf I-Y 2 i 16(-y)!,2i-y dy

= (2-ai12 { 2- '1g(})2 dY < 0

since g S03).
Since q is radial, so is (O)A' and by the Fourier slice theorem,

{ (,L ) = )/(1 /II) = (RI , )A(V, = 11LL).

Thus, 6 is admissible since g is. I

Proposition 4.7. Let f t S(!9O), let 6 -_ S(IýR') be an admissible radial
function, and let g t S9i) be such that Roo (s) = g(s) for all 0 •; S' 1 .

1) If dis even,

4)hb f)uv) =

! 4 2 2 Cu,,l-d, 2I q d-al ; Re f)(u. 0) dO2{r C~- s'l O"

and
4)c '(g; Af) (u, v) -

2(71 eTdC ll-dt 2 f d (Dl ý(ac,1g Rofl(u., 0) d0.

2) If disodd,
)rdJ(D f)(u.,) =

- - ,C ,_,,,,,fs a)(1 )[ d, g • R) f ) (u,v. 0) dO.2 (27d)d - I •
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5. Conclusions

We have seen how the Gabor and wavelet transforms relate to tile Radon
transform. We have derived inversion formulas for the Radon transform
based on Gabor and wavelet expansions either by a direct method, or by
filtered backprojection. The second approach gives directly the Gabor or
wavelet transform of f from knowledge of the one-dimensional transform of
R% f for each 0.

The idea of using localizing transforms to invert the Radon transform
may prove practical for the following reasons.

1) Discretization properties of the continuous parameter Gabor and
wavelet transforms are well understood. Recovery of a signal from
sparse and even irregular samples of its Gabor or wavelet transform
have been studied in [11, 10, 20]. Moreover, an interpolation theory
exists for the Gabor or wavelet transform which allows recovery ot
the continuous parameter transform from its samples at a regular
or irregular lattice. This kind of built-in interpolation may enhance
numerical stability.

2) Fast numerical algorithms exist for computing the Gabor and wavelet
expansions of signals.

3) The spatial localization properties of the Gabor and wavelet transforms

suggest efficiency in the odd dimension case and also for local tomog-
raphy in the plane. The formulas for inversion of the Radon transform
in both the Gabor and wavelet case are local in odd dimension_-,, and in
even dimensions Af can be recovered in a local fashion.

4) The inversion formulas allowing the recovery of the Gabor and wavelet
transforms directly from the Radon transform data allow the selective
recovery of f or Af at certain frequencies (the Gabor case) or at certain
resolutions (the wavelet case). This feature can be useful in the noise
reduction of tomographic images [21].
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SThose dvnamical systems generated by integer matrices operating on
multidimensional tori are useful general exemplars. In particular, Bill
Moran and I have recently explored notions ot dependence betw;een pairs
of such systems.

It is well known that if the ri -x m integer matrix A is nonsingular and
has no roots of unity as eigenvalues, then ,A,` is uniformly distributed for
almost all vectors x on the m-torus (x is A-normal).

We have proved that given two such matrices A and B which com-
mute, A-normality coincides with B-normality if and only if A' = B" for
some positive integers r and s. This confirms a longstanding number theory
conjecture of Wolfgang Schmidt.

1. Introduction

Let me say at the outset that the main new result which eventually I will
sketch is joint work with William Moran [2]. That, in turn, traces back
through ideas of Schmidt (8,9, 10], and Cassels [31, to a problem of Steinhaus
which can be presented as pure number theory. It will, I hope, add interest
to emphasize the connexion with ergodic theory and dynamical systems.

The dynamical systems in question have discrete time and are deter-
mined by the action of an nr, n integer matrix T on the rn-dimensional torus
T'. = %R" /Z'f. From an initial vector x in TI" the system evolves along the

orbit (Tkx) as time k = 1,2.... varies.
The simplest example occurs when n. = 1 and the operator T is multi-

plication by 2. We may think of the initial vector x being in ]0,1] and having
binary expansion x = -k , xk2`-, or x x - Ix2x1... The evolution of the
system amounts to shifting along the tail of the expansion of x. As we all
know, this simple system illustrates some of the basic notions associated
with chaos theory. In particular we may obviously choose x to exhibit cycles
of arbitrary length, yet for almost all x the orbit is "randomly" distributed

207
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Brnon 208 }

over T. This butterfly effect relates even to time averages, since, for almost
all x and every continuous real-valued function f on 'T, we know that

lim T f 2 dnK r-,• E f(2 1'x)=- fdrrn, (1.1)
K-.Kk K I

where m is Haar measure on T. In other words, x is normal in base 2.
That famous result of Borel [11 (in view of its place of publication,

not inappropriate for a workshop on Italian soil!), has been extended to the
multidimensional case by Rokhlin [71, and Cigler [4]. In fact we say that
(J 'x) is uniformly distributed if, for all real-valued continuous f on T11"

I K

limr 1 f(T-x) = fdm, f1.2)
K-.c, K k I

where m is now Haar measure on t". We then sav that x is T- normal.
Moreover we call the matrix T ergodic if M almost all x are 1-normal. It

turns out that I is ergodic if and only if 1 is invertible and has no root of
unity as an eigenvalue.

The problem of Steinhaus, solved by Cassels, is: "Do there exist num-

bers normal to base 2 but not normal to base 3?" Schmidt M91 proved the
definitive one-dimensional result. For integer bases s, t, all numbers normal

to base s are normal to base t if and only if s' = t
t' for integers ca, h. (Oth-

erwise there are uncountably many numbers not normal to either one of the
bases and normal to the other.)

Cigler [41 proved that if the ergodic matrices S, I are rationally depen-

dent in the sense that S" - I ,, then S-normality and I-normality coincide.
We are thus tempted to say that the dynamical systems generated by ergodic
matrices S, I are dependent if S-normality and I-normality coincide. Is it
too much to hope that dependence implies rational dependence? In fact
Schmidt conjectured this in [101 and proved by a tour de force that the result
holds under the additional hypotheses that (i) SI = IS and that (i0) every
eigenvalue of S has modulus strictly greater than one. It is hypothesis (ii)
which Moran and I have removed so we have iohe result for all commuting
systems. (It is interesting to i•,te that dependence implies rational depen-

dence when S, I are assumcd to be automorphisms of .T. This nice result of
Sigmund [ 1 is much simpler-and essentially disjoint because commuting
,'utomorphisms are automatically rationally dependent).

2. Schmidt's result in one dimension

Let us fix integer bases s, t. Maxfield's result that s-normality and t- normal-

ity coincide when s" -- tb is not difficult. Accordingly let us assume that s, t
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are rationally independent. We seek to establish the existence of numbers
which are s-normal but not t-normal.

We know how to tinker with a base t expansion to prevent normality
and, intuitively, we feel this should not affect the base s expansion of such
numbers. More precisely we may choose a probability measure .t with
respect to which almost all numbers fail to be t-normal (e.g., if t = 3 we may
take a uniform mass over the Cantor middle third set) and we may hope
that p almost all numbers are s-normal. In view of Weyl's criterion we may
even expect to achieve that last step by estimating Fourier transforms. This
recipe is very much the one used by both Cassels and Schmidt. Because they
manipulated the base t expansion their measure ýt is generically of infinite

convolution type.
In a sequence of papers [2, 5, 6], Charles Pearce, Moran and I explored

the possibility of choosing instead a Riesz product for ýt. It turns out that
there are significant technical gains although our first efforts were more than
somewhat clumsy. Here, with the benefit of hindsight, is a cleaner version.

Choose

K

ii A lirn H(I -, cos2.tkx) .T,
k 

1

where ni is Haar measure on "T. Then Li is a probability measure
whose Fourier transform vanishes off words of the torm 7 ,- c with

. 1 O,: Also

Note, in particular, that

I K1

T Eexp(2riatkx) -• - (- a.e.)
k 2

Comparison with (1.1) or (1.2) with f(xI - exp(2mix) shows that ýt almost
all numbers are not t-normal.

Next we claim (following the lines of Davenport, Erd6s and Leveque):

Proposition 2.1. Suppose that, for all r,

N k-i

n 1 k I i 1

then p. almost all numbers are s-normal.
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Proof. In view of Weyl's criterion (i.e., (1.2) with t- = I and f(x)
exp(2Trirx)) it suffices to prove that, for all nonzero integers r,

N- Lexp[27tirskx) - (40 .ta.e.) (2.2)
k I

Because I exp(27rdij )l = 1, it is in fact enough to show (2.2) along some mildly
lacunary increasing sequence N = Nj. In fact provided that N , 1 (1 4-c)N,

we find

e-- 1 M exp(2'tirskX) 2c,~ I exp{2rhirskx• • '-. €

k 1 k 1

whenever Ni < NM -< Nj 1 .
Observe also that (2.1) gives

X- N2

N- 1  N-1 T exp(27Tirs 4 Ix1 dýL(xl < oo.
N 1 ! k 1

Choose M , 1 - (1 + 0 Mi, then

22

(Mi1 1 ) Mi Nmin N exp(27tirskx), d•i(x)- o

i.e.,

N,2

Z I{N1 Lexp(27rtirskx)! d•)x)<c,

for some suitable increasing (N ) and the result follows. I
It remains to establish (2.1 ). This we achieve crudely by counting the

number of possible nonzro Fourier coefficients, i.e., by counting solutions
of the equations

r(sk -S1  CI Cit i E ý 0,j ,. (2.3)

In fact let GN be the number of k * N such that for some j with 0 i<
k - log N and some ci, equation (2.3) holds. In view of Proposition 2.1 it
suffices to check that

T N-2GN < oo. (2.4)
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This is because

N l (rs I-,; I N 'ING-, Nlog Ni
Y- N ; Y-

k I I I

To check (2.41 we use the independence (it st and Alan Baker'., Iam ou-

estimate that there is a constant C so that

'log s - mlogti C t; - f2.1

whenever 0 - rmax \ , TIi N. We can replace ,t, s t wsvithiLlt ]1-t

of generalitY and therefore can assu me that m111111tl ' Cn.

Lemma 2.2. It !2.3.) holds with C !,, 1 tht.n but llt-, to I a T I tl itn

most 3i"ý, " discs of radius It C iving ill some ixed dis.

Proof. 1 s t-i 7 I1 '- I i t' T.rheSc.COld trmll Of til'

product is 1 0:i C 2 .lhc third ter! Calln e written (with .. ii 11,t

of t a

t 

)

%%here

R' U t r 2.
L

In view of the lelmma and ineC1uality 2.35, none of lthc discks atl ontail

more than one element. It follows that G-. doe", not e'\'eed \',N'' and 2.1
is established. I

3. N dimensions-underlying method

Following Schmidt we consider a somewhat wider class of matrices, the
aIinoit iiitfe'r matrices. These are nT • Ti invertible matrice'. with ra1tion0[1,

entries and all of whose eigenvalues are algebraic integers. Such a matrix is
ergodic if and only no eigenvalue is a root of unity and it is these so-called

,lmost erv-godi matricesthat we use. Schmidt proved in [It0] that for every
almost ergodic matrix I there exists an integer dI (the denoninator of I ) such
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that dT" is integral for all rn = 1,2.... This makes it possible to consider
Riesz products of the form

K

= lim fJ(1 +cos2rocTkx).r ,
Ki k I

where m is Haar measure on 'T" and oc is an integer vector multiplied
by the denominator of T. Of course this makes sense only if there is a
substitute for the lacunarity familiar in the one-dimensional case. We require
dissociateness in the sense that equations

K

c0i a -1 0 (ci : :0,±1, ±2,)

cannot arise unless all ci = 0. Because I-normality and i "-normality co-
incide we are at liberty to replace I by some suitable power to achieve
dissociateness. The appropriate result is the next lemma.

Lemma 3.1. Let T be almost ergodic. Then there is a positive integer p such
that (aT T'"P) is dissociate for all a ý- 0 in 0".

Proof. If every eigenvalue of I had modulus one then Dirichlet's theorem
would force some root of unity to be an eigen value in contradiction of ergod-
icitv Acco:dingly we may replace T by TP to ensure that some eigenvalue
Ai of I has modulus greater than, say, 5. (The integral nature of dT" rules
out the possibility that all eigenvalues are inside the unit circle).

Assume then that I 1 - 5 and X1 is an eigenvalue of T. First we decom-
pose I over the rationals into a direct sum of matrices whose characteristic
polynomials are of the form ci(xl' where q is a monic irreducible over 0.
At least one component of a in this decomposition will be nonzero and the
entries of a remain rational. Replacing T by a suitable component matrix
we can assume that the characteristic polynomial of T is a power of an irre-
ducible. Next we consider I as a linear operator on i" and decompose Q" as
a direct sum of subspaces, V,\ ker (A 1 I as A ranges over the eigenvalues
of T. The decomposition can be achieved over the splitting field of q and
the automorphism group of this field will permute the components of a,
leaving a unchanged since it is rational. Thus the component of a in each
of these subspaces is nonzero. We may replace T and a by their components
on the subspace Vx, and we choose s to be the largest integer such that

(3-a(l\ - I)' i 0. Now any equation

Ecial' - 0

leads to the equation

E~~ ~ ~ 0~(1- )l
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which is

and that forces ci 0. I
Matters are now arranged so that analogues of the one-dimensional

case may be employed. In particular it is straightforward to see that p.
almost all vectors in V" are not T-normal. The challenge is to prove that o
almost all vectors are S-normal and this boils down to counting solutions of
matrix Diophantine equations of the form

AA , m,i j

,.I k S 1
s S ,' aT IT -,,T '- ý0, ju1,) (3.11

4. Irreducible case

For a workshop such as this it is inappropriate to plough through the tech-
nical details of the proof so let me discuss the simplest case, that in which
the algebra A(S, I )generated by S, I is irreducible. That forms the basis for
an induction proof of the general case and the reader is referred to [2] for the
full details.

We assume then that 0" has no invariant subspace for the algebra
A(S, I )and that for each o( in 0." there exists 1i in •)" with T N- 2 G-,, (Al)
,x, where G,,,N(13 is the number k - N such that for some i with 0 -

k - logN and some C1,C2,C 1, CV . , (C,, 0,±Il)
V, k.)

(,Sk 13' ca'"

Let us suppose further that for any eigenvalues A of S and p of I with
A" t j)"' and maxN m', ' N then

!n'logA - m' ogp .(" logN

and (as a consequence of replacing S, I by suitable powers) that any eigen-
value of S or I with modulus ., 1 has, in fact, modulus .- C 2.

Lemma 4.1. Under the prevailing conditions there exists an ti • uT matrix U
over 0 such that if I N is the number of all k for which

Mi k I,

LI (S- SI) -- '" (4.1c
mi I

for some 0 1 k log N and c,,, , 0, t I then " N 2 tN -x). Moreover
LI belongs to A (S, I ),



{ Brown 214 }

Proof. We know that for each o( 0 in '" there exists some (3 in 0"'• such
that

13S -S ) - = Si cInaT11' (4.2)

ior infinitely many pairs (k, i) corresponding to k in GN ((3). Choose a cvclic
vector ao for A(S, I) and let 13, be the corresponding vector as in (4.2).
Multiply both sides of (4.2) by an arbitrary element of A(S,I ( to see that
(4.2) does indeed establish a linear correspondence which we can express
in the form (3 -= oU. Evidently U belongs to the algebra generated by S
and i. I

Lemma 4.2. Let A -t 0 be an irreducible commutative subalgebra of N1 (0'
There is a finite field extension F of 0 and a field isomorphism 14 : A , F
such that, for each A in A, ý, A) is an eigenvalue of A. Moreover. given
some fixed S in A and as eigenvalue A, of S, we may choose 4)(S) - ..

Proof. If A A- . and ker A •- 0 then ker A would be a proper invariant
subspace of .4. Accordingly each A in A is invertible and A is a field which
is isomorphic to a finite extension F of 0" under some map q, : A , F.
We know from the Cavlev-l amilton theorem that A satisfies its own char-
acteristic equation and therefore H (A) is an eigenvalue of A. The minimal
polynomial m, of any nonzero S in A is irreducible and so the Galois group
acts transitively on the roots of that polynomial. It follows that, given \.- we
may indeed choose 14(S) A-

Proposition 4.3. Under the conditions of this section there are integers 1', i
such that SP I'.

Proof. We apply the last lemma to choose ý) :A ,S, I F F such that 14',S (S
C). Now evaluate both sides of (11.1) under 14, to obtain an analogue of
(2.31 with 1)(Llj in place of r, ',(S) in place of s, ,(1 ( in place of t. The
one-dimensional methods of the previous section force

iSI" -0 1 ",, for some p,q,

and we deduce that

S11 Il'
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5. Forwards and sideways

The Riesz product technology makes it possible almost to separate the linear
algebra from the Fourier analysis and number theory. That is why Moran
and I have been able to push Schmidt's methods much further. We have also
made further progress in the non-commutative case but that work is still in
preparation and is still far from resolving the "big" conjecture.

Absolutely fundamental throughout the work is the possibility of rais-
ing S, T to suitable powers without affecting normality. This is very much
a feature of the (almost) integral nature of the matrices. Even in the one-
dimensional case there are difficult questions concerning non-integer bases.
For example, is /2F normal to base 2?

In a forthcoming series of papers Berend, Moran, Pollington and myself
will demonstrate several new results on normality to non-integer bases. For
example we show how to construct generic examples of 0 such that normality
to base 0 does not imply normality to base 01' and normality to base 0' does
not imply normality to base 0. Moran, Pollington and I can also show, for
example, that every number normal to base vT,; is necessarily normal to
base 10 but we believe that the converse fails. Riesz products play a key role
there also.
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I This paper will contrast two wavelet-based image analysis techniques,
one fundamentally non-linear and the other essentially linear, to process
images arising from different physical sources and requiring fundamentally
different processing outcomes. The intent is to emphasize the flexibility
inherent in image processing algorithms even given the constraint that the
initial feature extraction process is a wavelet analysis. (It should be noted
that current physiological data from mammalian visual centers indicate
that a Gabor-like wavelet analysis is one of the first steps in animal visual
processing; in humans this becomes an exquisitely flexible, adaptable and
programmable process, to match the specific visual task required.)

We will first describe a non-linear system to locate specific key land-
marks on VLSI chip photomicrographs. These landmarks, easily visible
to a human observer, are not extractable by any linear spatial filtering
technique or any thresholding technique. However, if a series of Gabor
correlation planes (using appropriately selected size, frequency and orien-
tation parameters) are computed, it is possible merely by selecting the max
or min value for each pixel in the registered set of planes to produce an
"image" which clearly shows the desired landmarks. This is a non-linear
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rule-based system selection "filter" following the essentially linear process
of Gabior correlation.

In a second case, we will show that actual infrared images can be
filtered to select items of specific sizes and texture by a linear summation of
Gabor correlation planes followed by a simple threshold rule.

The purpose of this work is to demonstrate that Gabor features seem
to be intrinsically useful for image processing provided that flexibility in the
use of its fruits is adopted by the system designer.

1. Introduction

This paper will describe two image segmenters specifically adapted to dis-
tinctly different types of images. Both, however, are based on an initial
Gabor wavelet decomposition of their images and differ from each other
only in their post-Gabor-processing details [4]. The fact that the images are
derived from totally different sources and yet are both usefully processed by
a wavelet analyzer suggests to us that this may be a broadly useful technique.
We also note that the initial processing of images in the vertebrate brain stem
and in the mammalian visual cortex also includes a close approximation to a
Gabor wavelet decomposition of the scene being viewed by the animal, and
are thus further encouraged to explore the consequences of Gabor decompo-
sition of images. The first segmenter described is for photomicrographs of
VLSI chips obtained for the purpose of reverse-engineering and circuit ver-
ification of the chips. The second segmenter is designed to locate potentiol
targets in a FLIR image. Finally, we will conclude with an appendix outlining
some Gabor-like processes now known to occur in animal visual systems.

2. VLSI chip image processing

Figure B.1 shows a typical photomicrograph of a portion of a VLSI cir-
cuit. This is a 512 x 480 array of pixels derived from a TV camera image.
VLSI circuits are built up from a small repertoire of standardized circuit
elements such as resistors, transistors, flip-flops, switches, etc, which are
connected by straight metal conductors. Layers of the circuits are intercon-
nected on the chip by vias or contacts which are round or toroidally shaped
elements. Deriving the electrical circuit from such a photograph is a good
candidate for automation because the chips consist of a very large number
of iterated, stereotyped arrangements of a small set of possible elements.
Frequently, thousands or even millions of each element can be found in
currently used chips.

The first elements we chose to find are the round vias or contacts. Note
that while these are visible in Figure B.A to a human observer, it is virtually
impossible to extract them with the usual image processing techniques. They
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can be extracted, however, with a Gabor-wavelet-based process. The process
begins by performing a two dimensional correlation between the image and
an appropriate two dimensional Gabor wavelet. We use the term "Gabor
filtering" or "Gabor transformation" for this operation [3, 2]. This process is
described in the appendix of this paper.

Gabor transforms of the images are computed directly in the spatial
domain. Several factors make this method attractive. The image size is
512 x 480 pixels so that high speed two-dimensional array processors are
available, and spatial correlation allows control of the decimation of the
scene. With this technique, the Gabor transform is defined as the dot product
of the Gabor wavelet and the image at each point on the image.

The quality of images obtained from the chips varies among the dif-
ferent chips and regions of the same chip. Therefore, the images are first
preprocessed so the Gabor filtering has the best chance to discriminate the
contacts. We generally use a special normalization technique to do this pre-
processing. The average brightness of a neighborhood of pixels around a
selected center pixel is computed and the brightness of the center pixel is
subtracted from this average. The result is then multiplied by 2 and added to
127, the middle of the total 0-255 brightness range in the system [7]. The ef-
fect is edge enhancement with a normalized, constant average background.
Contacts, which typically appear as small bright regions surrounded by dark
rings, are emphasized. This local computation technique is similar to some
of the normalization processes performed by the vertebrate visual system
[I11]. Figure B.2 shows the results of this process applied to Figure B.I.

Pixel intensity values can range from 0-255 in our eight bit system:
full black to full white. In some images, however, a histogram of pixel
values shows the total intensity range to be very narrow. Linear contrast
enhancement can be performed to spread the variations of image intensity
over the full range available to the image system [5]. This allows easier
visual examination of the image.

After this preprocessing, several Gabor transforms are taken of the
image. The required Gabor wavelet parameters which must be specified are
orientation, Gaussian envelope amplitude and width, sinusoidal modulation
frequency and wave type (sine or cosine). Since this application uses spatial
domain correlation, a decimation factor can also be specified.

Gabor filters respond strongly to linear features oriented parallel to
the filter's principal axis. The strength of their response is also dependent
on the relative size of the object and its components or texture compared
to the modulation pitch of the Gabor wavelet. Figure B.3 is an example
of correlating a Gabor pattern with a 450 orientation with the image in
Figure B.2. The majority of features on the VLSI circuits are the metal
connective "wires" and are horizontal and vertical; the vias and the contacts
appear as circular features. Therefore, we used a set of Gabor filters with
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rotations of 20, 45, 70, 110, 135, and 160 degrees. Orientations of 0 and 90
degrees and their multiples were avoided in order to suppress the wires
and help enhance the circular elements. Not all rotations were required for
all images.

The angles chosen cause the Gabor filters to respond strongly to the
edges of the contacts and the corners of other features, but not to many of
the other chip features. The Gaussian width and the sinusoidal modulation
of the wavelets are chosen to match the expected contact size in the scene.
This reduces the response of the filters to many corners and other distractors.
When the set of Gabor filters of varied rotation is applied to the scene and
combined correctly, the response of the contacts dominates the resulting
feature set.

The transformed scenes are combined by a localized non-linear thresh-
olding operation. In the Gabor-transformed scenes, the pixel values are
limited to {- 127 to 127}. Each input image will produce a set of intermediate
transformed images which depend upon the rotation of the Gabor filters-
For each pixel in the combined image, the pixels with the same Ix, x) coor-
dinates in each of the transformed images are individually examined. The
pixel with the greatest absolute value is used for the feature set (and the sign
is preserved). This technique selects the extreme values and assumes they
contain the most information. Once the feature set is assembled the pixel
values are shifted to range from 0 to 255. Figure B.4 shows the result of this
process. The pixel array shown in Figure B.4 is then thresholded to select the
maximum 5-10% pixels. Figure B.5 shows the superposition of Figure B.I,
the original image, with these maximum pixels derived from thresholding
Figure B.4. Each of the bright spots is a potential location for a via or contact.
In typical scenes, the highlighted pixels represent only a few percent of the
original 512 x 480 array (see Table 2.1).

Chip Scene Contacts Contacts Area
Present Detected Covered

A 1 27 27 8.0%
A 2 45 45 7.2%
B 1 42 42 6.4%
B 2 54 54 8.3%
C 1 23 23 3.61'4
C 2 11 11 0.5%7,
C 3 24 24 14.6%
Table 2.1: Segmentation results.

To determine which of the highlighted pixels actually represent vias or
contacts, a video subimage from the original (or enhanced original) scene,
about the same size as the vias or contacts, is extracted and correlated with
a nominal template of the desired element. In this research, correlation
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was usually performed by a trained neural net (connected in the back-
propagation mode) [8].

By limiting the number of such locations to be searched to a small
number of the 512 x 480 possible locations in the original image, the pro-
cessing time is greatly reduced. Many fewer false positives result and in our
experience, virtually all (96%) of the targeted forms are located.

In a sense the nonlinear Gabor analysis serves as an initial selector filter
for points in an image which have a high likelihood of containing the sought
image. Thus, the expensive correlation scheme to determine if the target
image is actually at some location need be carried out only at a few locations
in the scene. This type behavior seems to occur also in animal visual systems
where actual eye motion consists of a sequence of jumps (saccades) driven
by image content.

3. Segmentation of FLIR images

The second application discussed in this paper is the segmentation of po-
tential targets in forward looking infrared (FLIR) images. The motivation
is similar to that in the previous application. Given an image with a large
number of pixels, is there some easy way to locate the coordinates of the
most likely locations of targets prior to performing complex target analysis
and identification procedures?

Figure B.6 shows a representative FLIR image. It was subsequently
processed by correlating it with Gabor wavelets using four wavelet orien-
tations: 0°; 450; 900; 135'. The pitch and orientation of the Gabor wavelet
modulation is important for these images. A Gabor wavelet can be con-
sidered to be an anisotropic spatial filter and Gabor transformation is an
approximation to spatially filtering an image.

Therefore, it is important to estimate the spatial frequency contact of
the targets of interest and select Gabor filtering frequencies to highlight these
frequencies. In the case of scenes containing targets, approximate range is
frequently known as is the approximate size of the targets. Therefore, it is
possible to estimate the angular extent of potential targets and hence select
the appropriate Gabor wavelets for image plane processing. If not, then the
images can be processed with a range of Gabor frequencies and then post-
processed with extra-image information to analyze potential target sites.

The example in Figure B.7 shows the result of applying appropriate
Gabor wavelet functions. Figure B.7 has had only one non-linear opera-
tion, namely the final thresholding of a new image created by simple addi-
tion of corresponding pixels in the four Gabor filtered images created from
Figure B.6.

Figure B.8 shows the same image after Gabor filtering with sine rather
than cosine modulation. Notice this is an effective edge finder without
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the disadvantage of many derivative type edge finders, in that there is no
enhancement of high spatial frequency noise. This is because the spatial
frequency components of a Gabor wavelet are grouped about a narrow band
of frequencies so that a Gabor-filter is actually an anisotropic band pass filter.
This filter can be tuned to type of edge of interest as shown in Figure B.8.
This image is also the result of final thresholding of the linear summation of
four Gaber filtered images.
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A. Gabor-like processes in animal visual systems

The basic data input channels in the mammalian visual systems are well
known [91. See Figure B.9. There are three basic processing centers. The
first of these is the retina, a five layer system in which the optical image is
coded so that it may be transmitted through neuron channels to the brain.
The retina performs local contrast and average intensity normalization, color
coding, motion detection, spatial and dynamic range data compression, the
first stage of log Z mapping of the two-dimensional retinal image, and then
transmits local differential brightness data of points in the image compared
to a local circular surround of image data.

These data are mapped in a six layer system in the brain stem (lateral
geniculate nucleus (LGN)). Individual neurons can be instrumented in [.GN
by means of micro-electrodes, and it is here that we see that many of these
neurons seem to view the world as though they were Gabor-like filters
[6]. The visual data are then retransmitted in the form of a log Z map of the
optical image to the primary visual center (VI) in the cortex and it is here that
humans are first aware of visual data. Needless to say, instrumented cells in
VI respond as though they are components of two-dimensional Gabor-like
filters. Therefore, one concludes that the apparent world is in fact the real
world viewed through a set of spatially distributed Gabor-like filters. These
can obviously serve as texture and edge detectors for animals like us, as well
as pattern recognition machines.

Several researchers have proposed models for the mammalian visual
system which are based on Gabor's work (see [2, pp. 1164-5] and [6]). The
idea that the human visual system optimizes the available information in
both the spatial and spatial frequency domains makes intuitive sense 11,
p. 1426]. A model of the visual system which uses Gabor filters may help
resolve the long-running debate over whether the cortical (brain) cells in-
volved in vision perform as local feature detectors in the spatial domain or
spatial frequency components of a Fourier-like decomposition [2, p. 1160]
or both.

Daugman modified Gabor's one-dimensional time-frequency "sig-
nals" into two-dimensional spatial filters. The filters consist of a two-
dimensional sinusoid (grating pattern) multiplied by a two-dimensional
Gaussian envelope. These filters were also shown to have optimal joint
resolution in the spatial and frequency domains [2, pp. 1162-4]. Daug-
man's two-dimensional Gabor filter is a product of a two-dimensional
siniusoid and a two-dimensional Gaussian envelope. The general form of
the two-dimensional Gabor filter family in the space domain is:

V(x,gj) - exp[-(x2 +N)/2(,x' + 132)]sin[ -27t(Uplx + Vcpy) - 411 (A.1)

where (x,, ,,) are coordinates for the Gaussian, ot and 13 are the Gaussian
decay terms, U,, and V4, express the modulation, and W controls the phase
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of the two-dimensional sine-wave. The resulting waveform is shown in
Figure B. 10.

One example of a visual system model is given by Jones and Palmer [6,
pp. 1233-581. The hypothesis in their paper is that the visual fields in a typical
mammalian (cat) visual (brain) cells behave as though they were linear filters
having the functional form of the two-dimensional Gabor filters. Jones
and Palmer obtained the two-dimensional spatial response and temporal
responses of 36 instrumented cells from cat cortices. They used a simplex
algorithm to find Gabor filters which best fit the response profiles in a least-
squared-error sense. The error between the spatial response profiles and
their corresponding two-dimensional Gabor filters were then calculated.

The study slh ved that 33 of 36 spatial responses and 34 of 36 temporal
responses showed no statistical difference from a Gabor filter. The authors
concluded that the Gabor filter has appeared to evolve as an optimal strategy
for sampling images ,imultaneously in the two-dimensional spatial and
spatial frequency doma.ins [6, p. 12331. The brain visual system, however,
is not necessarily a linear system, so it is possible that Jones' and Palmer's
data may be a consequence of the specific and simple test stimuli appiied to
the cells rather than a general and robust description of the visual system.
Nonetheless, their results strongly suggest that Gabor filtered images are part
of the computational routines used by vertebrate animals to segment images.

Other authors have focused on texture discrimination, which requires
simultaneous measurement in both space and frequency domains [10, p. 7 11.
Turner approaches the texture discrimination problem from the aspect of
information representation [10, p.721 If an image is represented as single-
valued pixels, global texture information is not specifically demonstrated,
but if a global Fourier transform is used, local texture information is missing.
Turner therefore developed a set of spatially localized Gabor filters and used
them to segment textural features. His filters were circularly symmetric
and non-self-similar, that is the Gaussian envelope had fixed size but the
frequency of the modulated sinusoid was allowed to vary [10, p. 741.
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B. Figures

Figure B.1: Typical photomicrograph of a portion of a VLSI chip.

Figure B.6: Typical FLIR image showing a tank, APIC, target board
and truck.
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Figure B.2: Result of preprocessing the image in Figure B.1
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Figure B.3: The result of correlating ("Gabor transforming") the

image in Figure B.2 with a two-dimensional Gabor pattern. Note

that the image is printed on a 512 x 512 pixel space and that the

Gabor patterns are 34 ý 34 pixels; the pitch of the modulation is 17

pixels per cycle and is phased as a sine modulation (to provide edge

enhancement). The orientation is 45'.
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Figure B.4: Result ot performing, the non-linear min-max pixel se-
lection procedure on Gabor filtered versions of Figure 13.1. There
were six of these images resulting from Gabor filtering at 20', 45',
700, 1100o, 135', and 160'.
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Figure B.5: Superposition of Figure B.1 with the maximum/,
minimum points thresholded from Figure B.4. Note that these
points lie primarily on vias or contacts. They represent only a few
percent of the original 512 , 480 array of pixels.

Figure B.7: The result of adding four (cosine) Gabor filtered images
derived from Figure B.6 with subsequent thresholding.
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Figure B.8: Same as Figure B.7 but with sine Gabor filtering.

Correlation and
Classilication

Focus

Local Computations
(Normalization. etc)

Figure B.9: Basic input data channels in the mammalian visual
system.
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Figure B.1O: Two-dimensional Gabor functions.
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SSeveral, hopefully useful, observations concerning the topic in the title
are discussed: (i) It is noted that the axiom of intersection is not essential in
the definition of a multiresolution analysis. (ii) Several conditions, which
are often easily verifiable, are given for scaling sequences which imply that
such sequences generate scaling functions whose supports give rise to non-
overlapping tilings of N".

1. Introduction

The point of this lecture is to communicate several observations which may
be useful to investigators and other individuals who work with multireso-
lution analyses. These observations concern two topics: one pertains to the
axiom list for a multiresolution analysis and the other has to do with the
characteri7ation of certain scaling functions

Recall that a multiresolution analysis is a sequence V1'i. Z. of closed
subspaces of L2-9 1 ") which enjoy certain properties, see [1, 2, 3, 8, 9]. One
of the properties is the following:

n vi -- o,..11

Property 1.11 is often a nuisance to verify. For instance see 15, 71. The
reason for this may be the notion that the property depends intrinsically on
the specific example. Fortunately this is not the case.

In this lecture we show that property (1.1 ) is a consequence of the other
properties enjoyed by multiresolution analyses. Thus its appearance in the
definition is unnecessary and redundant.

t Partially supported by a grant from the Air Force Office of Scientific Research, AFOSR-

90-311.
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Another topic we will touch upon here concerns multiresolution anal-
yses whose scaling functions are characteristic functions. This matter was
recently studied in [3, 4]. The characterization of scaling sequences which
give rise to such scaling functions is an important problem in these studies.
Here we give several conditions which imply that a given sequence has the
desired properties and which are relatively easy to verify for many examples.

2. On axioms for a multiresolution analysis

2.1. The main observation

dilation for Z." if it satisfies the following properties:

"* A leaves ." invariant.
" All the eigenvalues A, of A satisfy ' i

These properties imply that q - ' det A! is an integer which is ? 2. In what
follows we will always assume that A is an acceptable dilation for V"

Proposition 2.1. Suppose V',Viii Z is a sequence of close subspaces oft 2 ('i"

which enjoys the following properties:

- f(x) is in Vi if and only if f(Ax) is in Vi, 1.
- There is a function 4) in Vc such that 14)(x -- k),keZ; is a complete

orthonormal system for V0.

If Pif denotes the orthogonal projection of f into V, then

lim 1P1if[! = 0 (2.1)

for all f in 12(T11),

Note that (2.1 (implies

O Vi -:o!. (2.2)

iEZ

Since the properties enjoyed by the sequence of subspaces in Proposition 2.1
are also enjoyed by all multiresulutiun analyses, see [1, 2, 3, 8, 9], we may
make the following conclusion:

Corollary to 2.1. If ,VjiEZ is a multiresolution analysis then property (2.2)
is a consequence of the other properties enjoyed by fV .
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2.2. Details

Proposition 2.1 is an easy consequence of the formula for the Fourier trans-
form of Pif:

Pif(.)= Z- {flZ - 27TBk)0(oB-j. - 27rk)}l (B-Qi) 12.3)

kEZ"

where B = A* is the adjoint of A. Here 6 denotes the Fourier transform of g
which, for an integrable function, is defined by

6_)= f e-(xL~g(x)dx

and distributionally otherwise.
In what follows we will use the notation

per, (g (i)) = Y- g li -27iB 1k).

kEZ'

With this notation (2.3) may be re-expressed as

Pi-f(L) = per,(f, (B- (B

To see (2.1), use Plancherel's formula, formula (2.3), and the fact that

Pi is an orthogonal projection to write

!PjfII 2 
= (Pjf, f)

- (2?x)' per,(f(, .hj(B - )) ( (B -i)f ddL (2.4)

Observe that

perJf(4)(0fB-iý) {perI(Jf(i)I 2 )2 2 'per,(Jp(B-i.)) 2 )}' 2

and since

perifV(OfB-'L)1 2 ) = 1,

by virtue of the fact that ,p(x - k)JkZ',, is a complete orthonormal system
for L2(!M"), we may conclude that

where q = Idet B1.
Observe that per, (q'i If(&)12 ) is essentially an approximating Riemann

sum for f yI" If(L - 2nr)12 dq. Hence if f is continuous with compact support
then if j < 0,
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per,(qilfM J12 ) < C (2.6)

where C is a constant which depends on f but not on j. Thus, in view of (2.5)
and (2.6), for such f we mav write

pit, 2  ,-- C{ q- 2q (B- )f(,)d," (2.7)LI-- I, iq

whenever j • 0, where C is a constant independent of i. Now, if f vanishes
in a neighborhood of the origin sayx' LI < we may write

F q-. 2 q)(Bil~f(&)Ld& f-l,• [~ q-ikP(B-'l~L) .2d 1 2.8

S.........th.... since 4,)L,- isin [t •{n , the integral involvinlg p on the rlgnt

hand side of (2.8) goes to zero as i --4 -oo. Thus from (2.7) and (2.8) we
may conclude that (2.1 ) holds for all f such that f is continuous, compactly
supported, and vanishes in a neighborhood of the origin. Since such f are
dense in L2 (:•n) and yPj.- 1, we may make the stronger conclusion that
(2.1) holds for all f in L2 (9I .

3. Tiles and scaling functions

3.1. Background

Suppose A is an acceptable dilation for Z" and X is a collection of distinct
representatives of Z."/AZ.". Recall that the number of elements in :" is cl,
where q =det A', and that

&,1  ýk 4- AV.'

where the terms in this union are pairwise disjoint.
Let

Q - E YNn : - YjA Ikil ki ,. (3.1)
I I

The set Q satisfies the following properties:

AQ U k i O}, (3.2)

U )k + Q> = 91", (3.3)

kEZ"

jkl t- Q~n 2 ý-Q! -- 0 whenever k1 , k2 .Xand k, ý k2 . (3.4)
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Here, S T T means that IT\S( = (S\T( = 0 where (S denotes the Lebesgue
measure of S. If Q enjoys

,k+ Q n Q 1-' for all kin Z'l\,0 , (3.5)

which may be stronger than (3.4), then the characteristic function of Q is a
scaling function for a multiresolution analysis.

In a recent paper [31 the authors studied such scaling functions and
gave several conditions which are equivalent to (3.5). Unfortunately, in
many interesting examples, none of these conditions may be particularly
convenient to test. On the other hand, most of the time one is only interested
in sufficient conditions on A and X to ensure that the set Q satisfies (3.5). In
what follows we give several such sufficient conditions which, in appropriate
cases, are relatively easy to verify.

3.2. Main results

To avoid unpleasant technical complications in what follows we always
assume that K contains 0.

For any nonnegative integer N let

N

A: N = Ax". (3.6)

Thus .AXN is a finite subset of Z" consisting of 4 N 1 sums k of the form

N

k = E A~kj (3.7)

where the ki's are in X. Let

AX- = A'XN (3.8)
N 0

and let

DAtX, •A'K•, - A'K,. (3.,9)

In other words every element in A'K,• is a finite sum of the form (3.7) for
some N and every element k in 'i.KK- is of the form

k - k, - k2  (3.10)

where ki and k 2 are in AX,. We are now ready to state the promised
conditions.
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Proposition 3.1. If D•}1' = Z" then Q sa tisfies (3.5).

Let b ý maxjkIk : k C fKj where Iki denotes the Euclidean norm of k, let
-1 sup=lA- 1 x : x c 9"' and xl = F:,

and let 2 = ýk E Z: Ikj < 2ab/(c - l),. In terms of this notation we may

state the following:

Proposition 3.2. If D3 ')D.41. then Q satisfies (3.51.

Sometimes it is possible to obtain an estimate of ýQ, the measure of Q.

in such a case the following may be useful:

Proposition 3.3. If 'Q! < 2 then Q satisfies (3.5).

3.3. Examples

We apply the above results to some of the examples considered in [3] where

they where handled by verifiving Cohen's condition.

Example 3.4.
Let rn l- 1, A 3, and X -0, 1,5ý. Then a = 3, b - 5, and 3 k

k., 5'. Since IL, 1 ,K and T3AX,- -'.A:KAX, it suffices to check that 2,

3and4arein '•,X -. The identities 2 - 3- 1,3 3 1, and 1 5 1

imply that 2, 3 and 4 are in T4AK , so that we may apply Proposition 12 to

conclude that the corresponding Q satisfies 13.51.

Example 3.5.
Let n - 2,

/ I I ) , 
!L I

In this case a \ 2 and b - 1. It is not difficult to verift that 'D 1'.X

Hence the corresponding Q satisfies (3.51 bv virtue of Proposition 3.2.

Let 11 2,

A (2 an
2 0) a

In this case it is quite transparent that 'D.tK - s2 So that Proposition 3.1

can be applied directly to conclude that the corresponding Q satisfies (3.5).

Example 3.6.
ILet Ti - 2,

Av(0 30)
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and let 'K be the set whose elements are the columns of

(0 1200122 4)
00012212 4

To see that S•JAX = Z2 it suffices to show that

(:)
is in DAJC. But this is clear since

Hence Proposition 3.1 can be applied directly to conclude that the corre-
sponding Q satisfies (3.5).

Remark 3.7. Numerical results corresponding to some of the above examples
easily imply that IQI < 1. For instance, in example (3.11) it is clear that Q is
contained in a triangle of area 3/2. Hence in this case Proposition 3.3 can be
applied to conclude that Q satisfies (3.5).

Example 3.8.
Let TI = 2,

let Xi be the set whose elements are the columns of

0 1 2 1 2

let 'X2 be the set whose elements are the columns of

(0 001 0 ,
0 1 2 1 -1)

and let 'K be the set whose elements are the columns of

(0 -4 2 1 -1"

The corresponding tiles are plotted in Figure 3.1, Figure 3.2, Figure 3.3.
Property (3.5) can be verified by applying Proposition 3.1, Proposition 3.2,
or Proposition 3.3.
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(IXIt

'2 I' ('2 i( (II o4 2 I01

Figure 3.1: Tile generated by:IC~ in Example 3.8.

"4 (2I I (14 84 MI 1 Ii 2 4

Figure 3.2: Tile genera Led by :K2, in Example 3.8.

3.4. Details

Proof (of Proposition 3.1). Recall that (3.4) says that

ýk1 f iQ; fl2kŽ±Qi - (3.12)

whenever k, and k2 are in AKO and k, j k2. Hence

A(k1 Q)qA(k2 ±ý Q) - 0(3.13)
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-2 ' - -IS5 I -15.5 0• Os I I S

Figure 3.3: Tile generated by X., in Example 3.8.

for such ki. In view of (3.2) we may write

Afki + Q) = Aki + U ýk Q;

Since the union in the right hand side of the above identity is taken over
pairwise disjoint sets, we may conclude that this identity together with
(3.13) imply (3.12) whenever k, and k2 are in A/XI. By induction it is clear
that (3.12) is valid whenever ki and ":2 are in .AXN for any non-negative
integer N. In other words, since k -h .X , can be expressed as k k K2
with kI and k2 in A'KN for some N we may conclude the following:

Lemma 3.9. If k 7 'DhAX and k 0 C then

* + Q. nQ - o

This implies the desired result.

Proof (of Proposition 3.2). If B, = x c IN" : Jxi _ rý then a routine
estimate shows that Q C B, whenever r _> ab/(a - 1). Since

1k + Br4 nBr

whenever IkJ - 2r, we may conclude that in order to show that Q satisfies
(3.5) for all k in Z" it suffices to check that Q satisfies (3.5) for all k in '3.
This, of course, is the case when 'B C 'DAXO. II
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Proof (of Proposition 3.3). The result is a transparent consequence of
Theorem 2 in [3]. We recall some of the details. In what follows X, denotes
the characteristic function of the set S.

Let QN, N = 0, 1,2..., be the sequence of sets defined as follows:

m Q, , -!/2, 1/21"

- QN UkE.,: A-l(k+QN-1), N = 1,2,...

Then the characteristic functions of QN satisfy

* •kzX,. (x - k) 1 a.e.

* for all functions w which are continuous and bounded on N"

lim X XQ\ (x)b4Mx)dx)( 1X
N-.-: X" XO, "(• 9• XQCx!kP(XldX

The last two items imply that

- k XT x k) ( 1 ae. (3.1e4

Since I Qr , oc and the sum in ý3.14) is integer-valued for all x, we may
conclude the following:

Lemma 3.10. 'Q is equal to a positive integer.

I ience the estimate lQi <- 2 implies that

,Q - 1. (3.13)

Since (3.15) is equivalent to (3.51, see Lemma I in [3], the argument is
complete.

4. Miscellaneous remarks

The observations leading to Proposition 2.1 were made while I was prepar-
ing a draft of [6] and was confronted with the task of verifying (1.1 ) for a
particularly unpleasant example. A review of the literature indicates that
the general idea however is at least implicit in earlier work on the subject.
For example, a variant of (2.1) may be found in [2].

Some of the observations which eventually led to Proposition 3.1 and
Proposition 3.2 were made during a discussion with Stuart Nelson who
provided significant input. Wayne Lawton kindly provided me with a copy

of [41, discussed some of the material therein, and brought Lemma 3.10 to
my attention via a different argument.
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Innovations and entropy rate with applications
in factorization, spectral estimation, and prediction

Athanasios Papoulis
Polytechnic University
Department of Electrical Engineering
Route 110
Farmingdale, NY 11735 USA

9 The concept of innovations is introduced as the base of the orthonormal
representation of a random process and the result is used to simplify the
estimation of the spectrum of an ARMA process. The ARMA model is con-
ceptually justified in terms of the principle of maximum entropy generalized
in the context of entropy rate.

1. Factorization and innovations

In the following, we present a number of fundamental concepts related to
the orthonormal representation of stochastic processes and we illustrate the
results with a variety of topics of theoretical and applied interest. The paper
is mostly tutorial. To make it self-contained, we review briefly the early
concepts [7].

A discrete-time stochastic process is a sequence x, or x~nr of random
variables (RVs) defined for every integer rn. We shall assume that it is a real
stationary process with zero mean. The autocorrelation R[mW of x[r) is the
expected value of the product xrti + m]x~m]:

R[m] = Exýrr + m]xtrin] (1.1)

The power spectrum S(ei-) of x[n] is the discrete Fourier transform (DFT)
of RWin:

S(ciw) - j R[me-i ..... R[m] = 2 S(lv)eil.l(u. di (1.2)

The process x[nJis called white noise if the RVs x[ni and x[n + ml are uncor-
related for every m # 0, that is, if

Rrm= P)ml={P, m=0
R= , m# 4 0 (1.3)

S(eiJ) = p

247
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Systens A linear time-invariant system is an operator assigning to a given
process x[ni (input) the process (output)

irtn = T x[(n - k]h[k] =x[rt•h[n] (1.4)
k.- -- o

Thus, y [n] is the discrete convolution of x[rt] with the delta response h[T] of
the system.

The z-transform

H(zW= - hhtl]z- (1.5)
TI -- oC

of h[n] is the system function.
With R,,, []n = Exfn+nmlg [n]E and R,, [m] = E{j[n+ m]y[n]f, it follows

from (1.4) that

R,, [m] = R , * h[- mn] R t = R ), [ni] * h[n] (1.6)
s,,, (z) = Sý,(z)H(1/z) S,, (z) = S,,,(z) H(z)

1.1. Spectral factorization

A function L(z) is called minimum phase if it and its inverse F(z) ( 1/L(z)
are analytic for Iz1 < 1:

L(z) -- t[nlz-" rF(z) = -y[rTlz-1 (1.7)
Ti 0 n1 0

If S)ej1L') is the spectrum of a regular process x[r• satisfying the Paley-Wiener
condition [4]

7 In S(c")I)dtL, (1.8)

then we can find a minimum-phase function Liz) such that

S(z = [(z)L(i/z) (1.9)

The determination of the function L(z) is simple if the given spectrum
S(z) is rational: S(z) = A(z)/B(z). We factor the polynomials A(z) and
B(z) and form the polynomials N(z) and D(z) using only the roots Izil < 1
(Fejer-Riesz theorem)

A(z) W N(z)N(1/z) N(z)
S(z) ( - L(z) -/z.1D1B(z) D(z)D(1/z) D(z) (.0
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Example 1.1. We wish to factor the spectrum

S(eiw) = 5-4cosw S(z) = 5-2(z+z-')

10-6cosw 10- 3(z+ z- 1 )

Clearly,

2(z- 1/2)(z-2) 2z- 1
3(z- 1/3)(z-3) 3ze-

1.1.1. Innovations

From (1.6) and (1.9) it follows that if x[rt] is the input to the system F(z)
(Figure 1.1) the spectrum Sij (z) of the resulting output irn] is white noise:

Sii(z) = S(z)r(z)F(1/z) = I Riirm] =5[rm] (1.11)

The process i[ni] so formed is called the innovations of x(nr]. Thus,

in] ]= Yk]x[rn - k] EU[n- + mll[nlv= O,' m (1.12)

V'(,) "- r(s) / () s)

r (s): whitening filter

x (t)) xt) L(s): innovations filter

Figure 1.1: Whitening and innovations filter.

Cascading the system r(z) (whitening filter) with its inverse I (z) (innova-
tions filter) as in Figure 1.1, we conclude that the resulting output equals
_ýnl. This shows that x[fn is the output of the filter Ltz) with input inil:

x'5n. 1 Y t(kli(rt - kj (1.13)
k 0

We have thus shown that a regular process x[n• is linearly equivalent
to a white noise process ifn] in the sense that each can be expressed linearly
in terms of the other and its past, as in (1.12) and (. 13). This is the extension
of the Gram-Schmidt orthonormalization to stochastic processes. We give
next several applications.
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2. Linear prediction

Linear prediction is the LMS estimation of the present value x[rt) of a stochas-
tic process by a linear function of its past values. The result is a direct ap-
plication of the projection theorem in Hilbert space. In terms of RVs this
theorem can be phrased as follows:

We wish to estimate an RV xo in terms of n RVs, x1_. , x,, (data). The
desired estimate is the sum

A

o = GIN, + ' 4- axn (2.1)

Our objective is to determine the constants ai so as to minimize the MS value

P = E{(x J )2 (2.2)

of the estimation error xe - _%. Clearly, P is minimum if

_a_ --,E= x -(aINxI + + a " x] =0 1 1.nr (2.3)

This yields a system of n equations expressing the unknowns ii in terms of
the second order moments E!xýxi1 of the n + 1 RVs x,,,... x,.

The system (2.3) can be written in the following form:

E{cx]= 0 i = 1. n and c = x - (2.,

This result, known as the orthogonality principle, states that P is minimum
if the estimation error c is orthogonal to the data x,.

Note that

Elt_xo& = 0 P - EI'., - )_xo (2.5)

2.1. The Yule-Walker equations

Now we consider the problem of estimating the present value xin] of a
stochastic process in terms of its N most recent past values x[n -- ki. Our
estimate is the sum

N

-XN[I] = CINok x(T[n- ki (2.6)
k I

as in (2.1). This is the output of the FIR (finite impulse response) filter

HN(Z) = aNi Z-I + "'" + aNN Z-N (2.7)

with input O[i]. To find the coefficients aN.k, we apply (2.5). This yields

EU(,Xr l - -'N flJ)xf - -- = 0 m = 1,...,N (2.8)
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Hence,

N

7 aN,k Rrm - k] = R[n]m m.= I .... N (2.9.1)
k=1

The above is a system of N equations (Yule-Walker) and its solution yields
the N unknowns QNk.

With aNk so determined, the resulting LMS error PN equals (see (2.5)
and (2.6))

N

PN = R[0] - aIN,k R[k] (2.9.2)
k-=l

2.1.1. Levinson's algorithm

To solve the system (2.9) directly, we must invert the matrix of its coefficients
(covariance matrix). This is a Toeplitz matrix whose inversion can be simpli-
fied. Next we present a simple recursive method (Levinson's algorithm [31)
yielding the N + 1 unknowns PN and aN.k. Following the standard notation,
we set KN = aNN. It follows from (2.9) that

R[1)
= R[0] - Ki P1 = R[01 - ai,1 R[1l (2.10)

Suppose that we have determined the N - 1 coefficients CNN-1,k and the
corresponding LMS error PN-I. It can be shown that [6]

N-I

PN-IKN = R[N] - y GN-1.kR[N - ki (2.11.1)
k- 1

CQN,N = KN QN,k = N_- 1,k - KN N -1,N-k I k< N-1 (2.11.2)
PN = (I -- K 2)pN _I (2.11.3)

The first equation yields KN; the second is used to find the N parameters
aN.k; the third equation determines PN. The iteration starts with (2.10).

Note that 1KNI < 1 because PN _> 0. Thus, PN is a decreasing sequence
of numbers tending to a positive limit P.

2.2. The Wiener filter

As N -4 oo, the FIR predictor of x[n] tends to the predictor

i[n] = 37 h[klx[r - k) H(z) = h[n]z-" (2.12)
kI n I



{ Papoulis 252 }

and, (2.9) tends to the infinite system (Wiener-Hopf equations)

Y h,[k]R[m - k= R[Tn] m > 1 (2.13.1)
k: A

P + -h[k]R[k]= R[0] (2.13.2)
k-1

involving the unknowns h.[k] and P. We shall solve the system (2.13) indi-
rectly using innovations. From the linear equivalence of the process x[n• and
its innovations i'ml it follows that the predictor -ifnl of x[n• can be written as
the response of a linear filter Hj(z) with input U[r]:

Tn - hi hkrjin - ki Hj(z) =- T in) (2.14)
k -i n- I

To find hi [k], we apply the orthogonality principle (2.4):

E (x[n - hi[k]ifr[i- k) ifn - T] = 0 m 1> 1 (2.15)

Since (see (1.12) and (1.13))

E5x[nTli[n - ml = tirm! Eii[n - kii[n - ml} = 6[m - k]

(2.15) yields

hi[m] = rij] i[m] = t- L[ki[rn - k] (2.16)
k I

This shows that the estimate [rn) of x)rt) is the response of the filter

Hj(z) = Y t[kjZ-k z L(z) - L[01 (2.17)
k I

to the input iMnl.
To complete the specification of the Wiener filter H(z) it suffices to

express i[n) in terms of x[n). The process iftnl is the response of the whitening
filter 1/L(z) to the input x[rn. Cascading with Hi (z) we obtain Figure 2.1

X1111 il, (z) = - L(z'--

i :n p i

Figure 2.1: One-step predictor.
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Example 2.1. Suppose that x[r ] is the process of Example 1.1. In this case,

L(z) = 2z- 1 1[01 = lim L(z) =2/3
3z- IZ_0

-z-1 1H(z)-6_63z-' i[n]=-_i[nL-1]+-x[ri-i1

2.2.1. The Kolmogoroff-Szego MS error formula

From (2.16) and (1.13) it follows that the estimation error equals

Onrt = 61 - _in = t[UOtini

And since E{i2 [rn]} 1, this yields

P = Ea§2 (nP - t2 (01 (2.18)

We shall express this error directly in terms of the power spectrum S(eJw) =
ILWe'w)1 2 of x[rn. The function In L(z) is analytic for Izj > 1. From this it
follows that 111

In L2 [01 1 fJln I(ei&w )12 dw

hence

"P =exp{ In S(e•') dw} (2.19)

3. Spectral estimation

A process x[rt) is called ARMA (autoregressive-moving average) if its spec-

trum S(z) is rational as in (I.10):

bo + blz-1 + ... + bMz-M N(z)
S(z) = L(z)L(I1/z) L(z) = 1 -- 1 + +.-N Z-N = DU(Z (3.1)

In this case, x[rn] satisfies the recursion equation

x[nl + alxr1i - 11 +... + aNNx[rt- N1 = bo't[n +... + bMin - M] (3.2)

where i[n] is its innovations. We shall determine the N + M + I parameters
ai and bk of L(z) in terms of the first N + M + I values R[0].... R[M + NJ of
the autocorrelation Rim] of xnl].

The process %in - ml is linearly dependent on O)n - m) and its past;

furthermore i[n] is white noise with E{- 2 [ n} = 1. Multiplying (3.2) by

x[r - m) and taking expected values, we conclude that

Ri + oiRm - I] + ... + NRI'M - N = 0 Tn > M (3.3)
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Setting mr = M + 1,-... M + N, we obtain a system of N equations. Its
solution yields the N unknowns ak. To complete the specification of L(z) we
need to find its numerator N(z).
AR processes If M = 0, then x[n] is an autoregressive process and

bo
k(z) = -z b0 lim,,,,, L(z) (3.4)L Oz) )

In this case (see (3.2))

xIT + 0a1[6n - l]+... + aN x[rm- N] = boi[n] (3.5)

and (3.3) is reduced to the Yule-Walker equations (2.9.1) if we set aN ,k = --ak.
Solving, we obtain D(z). To determine the constant bo, we multiply (3.5)
by i[n] and take expected values. This yields E{x[nrin][} = boE{ 2 (n.} = bo.
Multiplying (3.5) by xr[n] and using the above, we obtain

R[r] + ail R[t - 1] + ..- + aNR[n - N] = b0  (3.6)

This completes the determination of L(z).
MA processes If N = 0, then x[n] is the moving average of its innovations:

X.{[n. = boi[Ti +-.- + bMi[n - MI (3.7)

L(zW = b0 + biz- 1 
+ "'" + bMz-M (3.8)

In this case (see (3.3)), R[in] = 0 for mt > M; hence, S(z) can be expressed
directly in terms of R[m]:

M M 2

S(eiw) = T R[mlD(e-i"w) = IL(eiw)12 = bme-iMW

m -M

Thus to find L(z), it suffices to factor the function S(z) as in (1.9). This
method involves the determination of the roots of S(z). We discuss later a
method that avoids factorization.
ARMA processes Suppose, finally, that x[n] is an ARMA process as in (3.1).
As we have shown, the denominator D(z) can be determined from (3.6) in
terms of the N values R[M + I].- R[M + NI values of R[m]. With ak SO
determined, we form the process [2]

IJ[T-11 = xInl + alxn - 11 + ...- + IN t X[I"I-- NJ (3.9)

This is the left side of (3.2). Clearly, y[jn is the response of a system with
input x[n] and system function D(z). Hence,

Sy = Sx(z)D(z)D(I/z) = N(z)N(I/z) (3.10)
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From the above it follows that N(z) is the innovations filter of g[rt] and it
shows that qWnl is an MA process. To find N(z), it suffices, therefore, to find
the autocorrelation of ij[ri and proceed as in the MA case. Clearly,

N

D(z)D(1/z)= T P[mJz-m (3.11)
in -M

To determine p[m], we form the product on the left and equate coefficients.
This yields

N

p[mI = Ck-'n 0 k for lml ý< N and 0 otherwise.
k in

Convolving with the inverse RirW of S, (z), we obtain
N

R,,= R[rm - klp[k] for in! < Mand 0 otherwise, (3.12)
k -N

The determination of an ARMA spectrum involves thus the following steps:

1) We find the constants (ak solving the system (3.3).
2) We compute R,, ým, from (3.12).
3) We factor the corresponding spectrum.

Su (z( = E R 1, ,rn~z ... N~z(N(1!iz)
n M

Note that the system (3.3) cannot be solved with Levinson's algorithm be-
cause it holds only for m > M # 2.

4. Entropy rate

Given a partition A of a probability space S, consisting of N events A•, we
form the sum

N

H(A) = -- Lpiln(pi( ri n P(Ai) (4.1)

This sum isby definition the entropy of the partition A. Since p 4 PN • s-

and pi t> 0, it follows that

0 _< H(A) ", In N
The maximum is reached if p, ... T N - I/N and the minimum if
p, = I for some r. This justifies the use of the entropy as a measure of
uncertainty about the occurrence of the events Ai in a single trial: if pr -- 1,
then our uncertainty is zero because, almost certainty, only the event A,
will occur. If pi = 1/N, our uncertainty is maximum. We give next an
empirical interpretation of the concept of entropy. Our objective, however,
is a method of estimating the spectrum of a process based on the principle
of maximum entropy.
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4.1. Typical sequences

In the space S,1 of repeated trials, we form the event

B = {At occurs rn times in a specific order, 14.2)

The probability of this event equals

P(B)=p"' .. p"N (4.3)

If we perform the underlying physical experiment n times and the event Ai
occurs rn times, then, almost certainly

Pi - ni/nT (4.4)

provided that n is sufficiently large. In the space S, there are N " sequences
of the form (4.2). From (4.4) it follows that almost certainly, the elements
t E T of the subset

T = , Ai occurs ni r-pj times in a specific order (4.5)

of B occur. These elements will be called typical sequences.
With nr -- npi, (4.3) yields

"t) 'I e "" In 1,,1 ... e,•, C,, - u A (4.6)

Thus, all typical sequences have the same probability. Denoting by nr the
total number of such sequences, we conclude from (4.6) that

ntP(t) cj PIT) ,- I r =en " (A) (4.7)

If the events A1 are not equally likely, then H(A) < In N; hence, for
large n, nVI-(A) << nIn N. From this it follows that

lt ~< e In N = NY%

Thus, the number of typical sequences is much smaller than the number N
of all possible sequences even though almost certainly, only typical sequences
will occur because the probability PIT) of their union T is almost one. This
property of typical sequences is important in coding theory [81 and it gives
an empirical interpretation of the principle of maximum entropy.
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4.2. Entropy of RVs

Suppose that x is a discrete-type RV taking the values xi with probability pi.
The events A1 form a partition A, of S. The entropy of this partition is by
definition the entropy H(-) of the RV x:

H(x) = H(A- ) = - plInpi (4.8)

From this it follows that

H-(ýx) = -Efln f x)) f4.9)

where f(x) is a function equal to pi for x = xi and 0 elsewhere. Extending
(4.9) to continuous-type RVs, we defined the entropy of an RV x similarly:

H(x) = -E1ln f(x)1 = - In f(x)dx (4.10)

where f(x) is the density of x.

Example 4.1. If x is a normal RV with zero mean and variance a, then

H()= -E 1n 2 i =lnuv'h+ li2=lnav'The

Example 4.2. If f(x) = ce-x for X > 0 and 0 otherwise then E{cx; = 1, hence

H(yx) = -Eln c - cx) = -Inc + I

The conditional entropy of y assuming 3 is by definition

H,-91x), = -E{ln f(yIf)} = - f In f(gIx) dx di (4.11)

This is the measure of uncertainty about y assuming that x has been observed.
The entropy of a random vector X = I[xj...x] and the conditional

entropy of Y = -u ... , J assuming x are defined similarly:

H(X) = -E(In f(X) 1 H(yIx) = -E[In f (YX)( (4.12)
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4.3. Entropy rate

The rn-th order entropy of a stochastic process x, is the entropy of
H(xnxn-._-.... xni) of a block of m consecutive samples xk,
k = 1, ... , m of x,. The ratio ll(, . x,,,1 l)/m is the average un-
certainty per sample in a block of m consecutive samples. The limit

H (x) = lira --H(x ....... ._.)( .3
"I n-_

is the entropy rate of the process x.
It can be shown that [7)

H(x) l lim Hlx,'x,_ . x .. ... 1 (4.141

Thus H(x) is the uncertainty about the present of XT assuming that its entire
past is observed.

If x, is a normal process, then

Vi(x I = In \, 2-, . . In S(c ') dt I1.1.I

2 -1

Note finally that if x,, is the input to a linear system with system function
L(z), then the entropy rate Mi(- ( if the resulting output Li, equals

Thtj) - N ,Ix , 2 . I h (e•', (,I, I.t1
21 K

For normal processes, this follows readily from (4.15) because S, (CIL"

S, (CIL'' l IW'') 2 The proof of the general case is more difficult 15].

4.4. The principle of maximum entropy

Consider a partition A consisting of N events A, as in (4.1 ) Suppose that
we know nothing about the probabilities pi of these events. The maximum
entropy (Mti) principle states that in this case, the unknowns p, must be such
as to maximize the entropy Ii(A) of A. Since pI 4 . ' T - 1, this leads to
the conclusion that the events A, must be equally likely. If prior information
about the probabilities p, is available, then p, must be such as to maximize
H-(A) subject to the constraints' resulting from the prior information.

Example 4.3. We are given a die and we wish to estimate the probability pi of
its faces. In the absence of any prior information, we conclude that pi 1 ],6.
Suppose, however, that the probability that jeven shows equals 0.4. In this
case, the constants pi are such as to maximize the sum p In p11 p In p1,
subject to the conditions

PI + P2 + t4 p, I P2 + P4 P. = 0.4
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This yields

P2 = P4 =P6 = 2 /15 P1 =P3 = P5 = 1/5

The empirical justification of the ME principle can be expressed in
terms of the concept of typical sequences: the unknown constants pi must
be such as to maximize the number nit of the sequences formed with the
elements A1 of the partition A that are likely to occur (see (4.7)).

4.4.1. Constraints as expected values

We shall use the ME principle to estimate the density f(x) of an RV X under
the assumption that the expected values ii of nt known functions gi(x) of x
are given:

E{gi(x)} = gi(x)f(x) dx =rli i= 1.. (4.17)

In this case, our problem is to find a positive function f(x) of unit area such
as to maximize the integral

H(x) = - f(x) In f(x) dx (4.18)

subject to the constraints (4.17). It is easy to show that the solution to this
problem is an exponential:

I
f(x) = •exp{-Aigi(x) -.... gAgn(x)} (4.19)

where

Z = exp{f-Al gl (x) - * ,-g, (x)} dx (4.20)

The n. parameters A, are determined from (4.17).

Example 4.4. Estimate the density f(x) of a positive RV x with known mean.
In this problem, n = I

g(x)=x E{x}=1 f(x)=0 forx<0

and (4.19) yields

-eAx A= IZ+
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Example 4.5. Estimate f(x) if E{x2 } -= 12. With g1x) - x2, (4.19) yields

f(x)I eM- Wh _ 1

z 2M2 27M2

Thus, if the second moment of an RV is known, then its ME density is normal
with zero mean.

The preceding results can be readily extended to random vectors.

4.4.2. Spectral estimation

Using the ME principle, we shall estimate the power spectrum S(z) of a
stochastic process x, under the assumption that the first 2N + 1 values

R[rml = E{xxnm Iml < N (4.21)

of its autocorrelation are known. This problem was solved in Section 3
under the assumption that S(z) is rational (see (3.1)). In the following, we
make no prior assumptions. We show that, under the given constraints,
the ME principle leads to the conclusion that the process x, is normal and
autoregressive.

In this problem, the constraints (4.21 ) aresecond order moments. From
this it follows as in Example 4.5 that x, is a normal process and its entropy
rate equals (see (4.15)).

H(x) = In 2v/ - llnS(elw)dw (4.22)

The maximization of the entropy of x,. of any order is equivalent to the
maximation of its entropy rate H(x). Hence, to solve our problem, it suffices
to maximize the integral in (4.22) subject to the constraints (4.21). Since

j- wS I 1
S(te',) = - -

in - 1CRtlv ~ -

we conclude differentiating (4.22) that H(x) is maximum if

aH _ i r I e-i ...n.
8 =7_1 - On e dw = 0 Iml > N (4.23)

aRmnt 27T - Ste')-

This shows that the Fourier series coefficients of the function I/S(ei"') are 0
for Iml > N, hence, 1/SJ ei') is a trigonometric polynomial:

1 N•
I X c,,e- tnw (4.24)

'n

To complete the estimation of S(z), it suffices to determine the coefficients
c,. We can do so, using Levinson's algorithm as in Section 3.
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a The Method of Cauchy has been used to extrapolate a desired parameter
over a broad range of frequencies. This information is generated using some
information about the parameter over a narrow band of frequencies or at
some discrete frequency points.

The approach is to assume that the parameter, as a function of fre-
quency, is a ratio of two polynomials. The problem is to determine the order
of the polynomials and the coefficients that define them.

This method can be coded as a standalone program or incorporated
as part of a larger program. This technique has yielded accurate results
while in use in conjunction with a Method of Moments program and as a
independent program in filter 'nalysis.

1. Introduction

In a host of problems in electromagnetics, it is necessary to obtain information
about a system over a broad range of frequencies. In most cases it is not
possible to evaluate the desired parameter in closed form. The sixties saw
the development of the Method of Moments to overcome this difficulty. It
was shown that the Method of Moments generated remarkably accurate
solutions for a broad class of problems. The later years saw this method
being refined into a popular algorithm in electromagnetics research.

The Method of Moments is an approximation technique, which con-
verts interactions of complicated bodies into a set of smaller, easily solvable

t We would like to acknowledge the support of Scientific Atlanta for their partial support

for the completion of this project.
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interactions. This method finds its major advantage in the widespread use
of the computer. But its major drawback lies in that for broadband analysis
the program has to be run at many frequency points. In a large system the
execution time may be as long as days. Also the memory requirements in
large systems can be too much for many available computer systems. Hence
the time required to generate currents over a broad spectrum of frequencies
may be prohibitive. In the laboratory it is not always possible to make accu-
rate broadband measurements. This problem is especially severe in the case
of measuring the transfer function of a filter in the stop band. In some cases
the signal to noise ratio is too low to be confident about the measurements
of filter characteristics.

These drawbacks in current methods have created a need for a tech-
nique that would gcnerate the required information without using too much
time and still yield accurate results. One possible technique is the Method
of Cauchy. The approach is to approximate the currents as a function of a
frequency. The function chosen is a ratio of two polynomials. The problem
therefore reduces to the determination of the order of the polynomials and
the coefficients therein. With the polynomial coefficients at hand, one can
evaluate the currents at an arbitrary number of frequency points.

A successful application of this method would result in saving signifi-
cant amounts of program execution time.

2. The Cauchy Method

Let us represent the current as a ratio of two polynomials. Hence the current
(H), as a function of frequency (s), is

A(s)
H)(s) A s) (2.1)B (s)

The numerator polynomial is of order P and the denominator of order Q.
Hence we have P + Q + 2 unknown coefficients. Cauchy's problem is: given
Hn(sj) for j = 1, ... , J and n = 1 ... , Ni, to find P, Q, A(s) and B(s).

We need the values of the current and its Ni derivatives at frequency
points si, J = 1, ... , J.

The solution for the coefficients is unique if the total number of samples
is equal to the total number of unknown coefficients P + Q + 2, i.e.,

J

N L (Ni + 1) = P + Q +2 (2.2)
i i

From (2.1)

A(s) H(s)B(s) (2.3)
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Differentiating the above equation n times results in the binomial expansion,

Akn)(si) T j ."CiH(n-)I(sj)B'(si) (2.4)
i-O

where Ci = . Consider A(s) = oakSk and B(s) = Q o bksk"

Equation (2.4) can be rewritten as

P Q

Z A,'n'kak = j B,,,kbk (2.5)
k-0 k=O

where

___nk = S- u(k - n), (2.6)(k - n)!

n

BjnYk = T n CHn )su(k - i), (2.7)
i:O

j=1, ... , J, and n = 0, 1, ... , Nj, and u(k) 0 for k < 0 and I otherwise.
Define

A - ýA 1,n,o,A ,. ... AAjnP (2.8)

B [Bi,n,o,Bj,. ..... Bj,n,.Q] (2.9)

The order of matrixAisN x (P+ )and that of BisNx(Q + 1).

[a] = [ao, ,, a2,. aPI (2.10)

[b] = [bo, bl, b 2 ,. .... bQl 1  (2.11)

Then, equation (2.5) becomes

[Al-B[ b (2.12)

Now one can do a singular value decomposition of the matrix rAl - B]. This
results in the equation:

[U[E][V]'"[[b)] =0 (2.13)

The matrices U and V are unitary matrices and I is a diagonal matrix with the
singular values of [Al -B] as its entries. Given the number of nonzero singular
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entries, we can estimate the order of the two polynomials. Given these better
estimates of the polynomial orders one can recalculate the matrices A and B.
Now one can rewrite the above equation as:

[Al -BI[ =0 (2.14)

One solution is to choose the eigenvector corresponding to the minimum
eigenvalue. Since the eigenvalues are in general complex, the minimum is
defined as the one with the lowest absolute value.

In a computer realization of the Cauchy method, this technique could
lead to errors since we may have multiple zero eigenvalues which show up as
being only close to zero. The desired solution would be a linear combination
of the eigenvectors corresponding to these near zero eigenvalues. This is
specially true in the applications to filter analysis because the orders of the
filters are important. Choosing the orders of the numerator and denominator
polynomials as high values can lead to errors. One way of getting around this
problem is to assume that ac = 1.0. Now equation (2.12) can be written as

[AA--BI1{] =-A0 (2.15)

where A, is the matrix A without its first column, aI is the column vector
of numerator coefficients other than the ao and A, is the first column of
matrix A.

Now one does a singular value decomposition of the matrix A - B]
The resulting equation is:

[U1IZ-]V1'] [0b1 = -A0 (2.16)

where f is the diagonal matrix with entries the singular values of the matrix
[A1] - B). Now the solution can be written as

H' IV][£][U"Y Ae (2.17,

Hence we now have the coefficients of the polynomials at hand. We can now
approximate the current at any frequency of interest. Any parameter we are
interested in can be evaluated from the current.

It must be pointed out that the Cauchy method can be used for the
extrapolation of a function with respect to any variable. In electromagnetics,
frequency is often the variable of interest.
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3. Interfacing with the Method of Moments

The usefulness of the above method is the ease with which it can be incorpo-
rated into a Method of Moments program. The Method of Moments results
in a equation of the form

IV1 = [Z][I] (3.1)
Differentiating the above equation with respect to frequency results in a
binomial expansion

[V [Z]'[I] + [Z][l]' (3.2)

= W Z]- 1 [[V]' - [Z]'[[]] (3.3)

IV)" = Z" [I] + 2[Z)'tl]' + [Z] l" (3.4)

==>[1]" [Z]-' [[V]" - 2[Z]'[I]' - [Z]"[Ij] (3.5)

In general,

[V]n = TnC,[Z[n-ili (3.6)

= [Z]'- [[yIn - • jj Ci[Z]n-i[]i= (3.7)

In the above equations, [VI(n) is the vector with each element of [VI differ-
entiated with respect to frequency n times. Similarly [Z](') is the matrix
generated by differentiating each element of the Z-matrix with respect to
frequency n times.

Hence, using a Method of Moments program, we can generate all
the information needed to apply the Cauchy Method. Each element in the
solution [I] matrix can be treated as our function H(s). Given the function
and its derivatives at some frequency points, one can evaluate the function
at many more points.

4. The method in filter analysis

The Cauchy method can also be used in analysis of filters over broad fre-
quency ranges. This is particularly useful in generating the stop band re-
sponse given the pass band response and some stop band information. Also
one can produce the pass band response given some stop band information
and a little of the pass band response. A filter response is a ratio of two poly-
nomials and hence lends itself easily for application in a Cauchy program.
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5. Results

5.1. With the Method of Moments

To test the Cauchy method, the RCS of a sphere was plotted over a wide
frequency band. A program to calculate the RCS of an arbitrarily shaped
body using triangular patching was used. It was modified to calculate the
derivatives of currents as well. This information was used in the Cauchy
subroutine. Also the same program was used to calculate the RCS without
the Cauchy method. The RCS of a sphere was plotted as a function of ,
where a is the radius of the sphere.

The points chosen for the Method of Moments program were between
A = 0.8m and A = 1.4m at intervals of 0.1 m Using the above method,
currents at 300 frequency points in this range were evaluated.

The major saving arising from the Cauchy Method is in execution time.
The time taken for the above extrapolation, as compared to the time taken to
evaluate the RCS at ten frequency points in the same range is shown below.
The program was executed on a VAXstation 3100.

Method of Moments at 10 points: 3hr38min57.69sec

Cauchy Method: lhr50minO6.12sec.

Of the time taken for the Cauchy program to execute, I hr31 min45.14sec
was taken by the Method of Moments program to evaluate the current and its
four derivatives at three frequency points. The time taken for the evaluation
of currents at 300 frequency points was just 18 min 20.98 sec.

Figure A.1 shows the results from the Method of Cauchy and the
Method of Moments program. As can be seen from the figure, the ap-
proximation is very accurate over this broad frequency range.

5.2. In filter analysis

Another application of the Cauchy method is in filter analysis. A filter
transfer function was measured using a network analyzer. A few of these
points were chosen as inputs to a Cauchy program. Two different cases
were tested. One was the generation of the pass band response using stop
band information. The other was the reverse, i.e., the generation of the stop
band response using the pass band information. In each case a little of the
unknown band response was required. As seen from Figures A.3 and A.4
the interpolation and extrapolation was extremely accurate.
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Figure A.1: RCS of a sphere.
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Figure A.2: S2 1 of a microstrip filter. Information up to 5.89 GHZ
and from 7.21 GHZ used.
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Figure A.3: Phase of S21 of a microstrip filter. Information up to
5.89 GHZ and from 7.21 GHZ used.
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s Infinitely divisible piobability density functions on the half-line t • 0
form a convolution semigroup on t i> 0, as they describe stochastic pro-
cesses with stationary, non-negative, independent increments. A subclass
'D of such densities are C-' functions on the whole t-line when extended
by zero for t < 0. Such functions may be viewed as physically realizable,
causal, C' approximations to the Dirac 6-function, with further positivity
properties. The use of such probe waveforms for system identification is
particularly advantageous in transient wave propagation problems, where
the system's impulse response is typically highly singular. An ill-po.,ed de-
convolution problem must be solved to recover the system's response; the
semigroup and positivity properties of the input probe enable this decon-
volution problem to be implemented as a Cauchy problem for a diffusion
equation. This approach allows the analyst to monitor the gradual and
systematic development of sharp singularities in the presence of noise. One
important context where this theory applies is ultrasonic flaw detewLtion in
nondestructive evaluation.

Perturbations of the originally designed pulse shape, due to ampli-
tiers, transducers, and other interfacing devices, may destroy infinite di-
visibility and lead to waveforms with large negative oscillations. A much
wider class of probe waveforms can be constricted, the class 93, with c) '13,
that includes such waveforms. Moreover, if the perturbed pulse lies in '13,
a simple linear transformation of the noisy output data can be found that
reduces the perturbed deconvolution problem to one with a class 'D kernel.
The search for this transformation is accomplished in the Fourier domain,
by comparing the perturbed pulse with the originally designed pulse. The
practical significance of this observation lies in enabling the experimentalist
to correct for unintended effects of interfacing black boxes and recover a
tractable deconvolution problem. The procedure is illustrated with a nu-
merical experiment.

273
J. S. Byrnes rt al. (ed..), Probabhilistc and Sto/hastic Method.s in Analysi., with Applications. 273-28h.
0 1992 Kluwer Academic Publishers. Printed in the Netherlands.



Carasso _74 }

1. Introduction

Determination of the impulse response of a linear time invariant system is
an important objective in many areas of system identification. Frequently,
the system's complexity together with incomplete knowledge of its phys-
ical characteristics preclude an analytical calculation, [4]. In other cases,
the impulse response is needed to infer unknown inhomogeneities or other
properties of the system. One such example, [51, is the use of impulse
responses for flaw size estimation and characterization in ultrasonic non-
destructive evaluation of materials. In such contexts, the impulse response
may be obtained experimentally by pulsing the system with a physically
realizable, smooth approximation to the Dirac 6-function. The present syn-
opsis focuses on analytical considerations underlying the choice of probing
pulse and its impact on the subsequent deconvolution problem. A detailed
discussion, with further references to applications, is given in [2] and [3].

In one idealized experiment, an impulse of force b(t is applied at a
point x on tile surface of an infinite elastic plate; the output displacement
response at some other point g, not necessarily on the same side of the plate
as x, is called the dynamic Green's function (i(x, if, 0. Non-dispersive elastic
wave propagation between the source and receiver causes a (x, g, t ý to be a
highly singular function of t for fixed \, 1) Sharp features, including jumps,
cusps, spikes, and the like, signal the arrivals of various reflected wave,, and
characterize the object in the test configuration x,v. Hiowever, if a slmnooth
pulse waveform, p1ti, is applied at x, the output response at ii is given by

tr

btilt (r -. ,(0" I ' p t T) ( (X. i, id(T, t -ý 0. .I

'uch convolution severely distorts and blurs the sharp fIeatures, inwt, amd
bit) cannot be used to identify the medium in that important singula ritics,
may have been smoothed out. An il-l pseJ deconvolution problem must
be carefully solved to reconstruct ofi t, given 11(t I and the measIured nois
output bh,, t I in lieu ot b tit. Moreover, a prionr siiof/ihnss constraints on wt i
cannot be used to stabilize the inversion in the presence of noleS We'akCr
constraints, such as an a priori bound, M, on the 1 2 norm of lilt 1, together
with an estimate, t, for the I , norm h b11,, ', must suffice, The noise to
.signal ratio w c/M - 1, used as an adjustable regularization parameter
in (3.4) below, is the only a priori constraint in our deconvolution procedare
As a consequence, although the 1 2 error in the reconstructed (it I tends, to
zero as t - 0, there is no information on the raft, of convergence, 17. and
error bounds in terms of the estimated noise level in b,, t i, are not possible
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2. Infinitely divisible probe pulses

A way of compensating for the lack of an error bound on g (t) lies in perform-
ing the deconvolution in slow motion. Here, the notion of infinite divisibility
plays a key role. We consider smooth pulses p(t) satisfying

p(t) E Co; p(t) =0, t< 0; p(t) > 0, t >0; J p(t) dt= 1. (2.1)

Such pulses represent one-sided (or causal) probability density functions.
Infinite divisibility of p(t) requires the following additional property: for
every positive integer m, there exists a one-sided density q,, (t) satisfying
(2.1), such that p(t) is the rn-fold convolution of qm(t) with itself, i.e.,

p M= It qM t),"' (2.2)

For large Tn, qm(t) is a narrow pulse concentrated near t = 0, and
q,,(t) approaches 6(t) as Tn T oo. The inverse Gaussian pulse p(o,t), U > 0,
defined by

P(o., t) - , t >_ 0, (2.3)

is an example of (2.1) for which q,,(t) can be written down explicitly; we
have q,,(t) = p(u/m, tf. The pulse s(u, t), for u > 0, given by

s(or, 0 =e-, t _> 0, (2.4)

is also infinitely divisible, has much the same shape as (2.3), but the mt}'
convolution root of s(ot) is not s(u/m,t). Although relatively few C'
infinitely divisible densities can be writen down explicitly, a rich variety of
such functions exists, as the convolution of any two causal infinitely divisible
densities is again causal and infinitely divisible. While (2.3) and (2.4) are
unimodal pulses (see Figure AM), quite complicated multimodal pulses can
be created by convolving (2.3) or (2.4) with discrete Poisson densities. All
such pulses belong to the class ') defined as follows: A one-sided infinitely
divisible density p t) E cD if and only if there exist positive constants, A, c, 3i,
with A > 1, and (3 < 1, such that

v2taliql <• Ae-''''. (2.5)

t lere,

fi(l) -= 'f~t( - - f(tle-"i' dt, (2.6)

vV-7
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denotes the Fourier transform of f(t). Thus, (2.3) and (2.4) respectively
satisfy

'e-a17T, a = o/V/2, (2.7)

and

e- e 'Li 1 ''2 <_ vr27s(o,.)I •< 2 (2.8)

Note that infinite divisibility of p(t) implies that [fýL)I > 0 for all real ý.. See,
e.g., [6, p. 5571.

3. Deconvolution of class D probes

We now consider (1.1) when p(t) E 'D. If the exact data b(t) were known,
solving for g(t) would be equivalent to finding u(0,t) in the following
Cauchy problem:

al/ax = T•u, x > 0, t > 0,

u(x,O) = 0, x >' 0,

U(i' t) = NOt, t 0 , .)

where T is a linear pseudo-differential operator in the t variable determined
by the input probe p(t), and given by

(TPu)(x,t) J -' {f-(x,L)log[ v2_r-(L)i} . (3.2)

Indeed, Fourier analysis of (3.1) gives

SU(X, t) T IIfV 7ý( )j"- i)I1 0: ' 1 t oý , (3.3)

which reduces to g(t) at x = 0. Infinite divisibility of p(t) ensures that
(3.2) is well-defined, while (2.5) gives the Cauchy problem (3.1) a parabolic
character. The evolution of uWx, t) as x decreases from x I to x = 0 is
termed continuous deconvolution, and represents the progressive undoing
of smoothing caused by diffusion.

In the presence of noise, b, (t) replaces b(t) on the left side of (1.1) , and
a direct inversion is not feasible in that error amplification overwhelms the
reconstruction process. However, Tikhonov regularization of the ill-posed

I
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Cauchy problem (3.1) leads to the following approximation for u(x, t) on
0 <x< 1, t 0:

v~x t)= -- {[.v/•~(4)]X-i )•(/.))2 b1•-(1)

v(x,(t) 12 + (w 2 /27[) (3.4)

Here, tu = c/M << 1 is the L2 noise to signal ratio. For small fixed x > 0,
v(x, t) is a smooth approximation to the singular signal g(t) and represents
a partial deconvolution. One has the following 'log-convex' error bound,
which, apart from a factor of 2, is the best possible in the L2 norm,

11 tt(x,.) - v(x,.-) 1<_ 2M 1- x . , 0 _< X •<_ I. (3.5)

The parabolic nature of (3.1) can be exploited, [2], to obtain L' error bounds

for the partial deconvolution and its time derivatives at any fixed x > 0,
in terms of c, M, A, c, and [3. All of these estimates degenerate at x = 0.
However, for small c, one can validate the sharp singularities in the total
deconvolution v(0, t), by observing their early genesis at some x > 0 and
following their systematic development as x 1 0.

An effective computational algorithm for obtaining the evolution of

v(x,t) as x .1 0 has been developed [2]. The algorithm is based on the
Poisson summation formula and is implemented in Laplace transform space
using FFT routines. Input to the algorithm consists of time-domain data;
namely, the recorded histories of the actual probe p(t) and of the response
b,, t), digitized at 2N equispaced points on the finite interval 10, 2 T *, with N
and I sufficiently large. The 'optimal' value of the regularization parameter
tL is best found interactively, starting from a plausible first guess for the

ratio c/M.

4. Perturbations and the class 23

An explicitly known class 'D pulse such as (2.3) or (2.4) can be synthesized
as an electrical voltage using a computer-driven digital to analog (D/A) con-
verter. (It is advantageous to use the lowest value of r compatible with the
instrumentation bandwidth). To produce a dynamic force pulse having a
prescribed time dependence, a high fidelity transducer is necessary. I low-
ever, the electrical signal must first be amplified to a level sufficient to drive
the transducer. The cumulative effects of the amplifier and transducer may
result in an actual mechanical pulse q(t) markedly different from the ideal,
narrow, unimodal shape, [11. We will show how to get around this difficulty
in a large number of cases.

It is an interesting fact that there exist transformations of such proto-
typical class 'P pulses as (2.3) and (2.4) that may drastically change the time-

domain character of these waveforms, while preserving the non-vanishing
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property of their Fourier transforms. In particular, the distorted waveforms
may develop large negative oscillations and cease to be probability densities
altogether, let alone infinitely divisible ones. Convolution of T with the
one-sided functions h(t) described below, represents only one such class of
transformations. Other transformations, linear or nonlinear, may produce
similar results.

Consider any analytic function of the complex variable z of the form

00

A(z) = naz-, a, real, ao# 0, (4.1)
n --0

such that for some R > 0,

0 < bo •< JA(z)j _< b, < oo, 14l •< R. (4.2)

Let f(t) be any real one-sided function (including linear combinations of
Dirac 6-functions) such that v02Th(()[ <_ R, and let

- r--,,ft*n (ft'* ~ } 43

h(t) = a tt, , fM 0  (43)
n 0

Then h(t) is a one-sided function, and

0 < b , _< v '27lh'(ý)l _< b , < oo. (4.4 )

One may also rescale the time variable and form

h,1 (t = cj a,,{of(ltt-01(", 0>0, '1 0, (4.5)
n 0

while still retaining (4.4). The interesting case occurs when f(t) includes a
finite sum F- ckb(t - -rk), with 'Tk positive and ck real.

With arbitrariness in both A(z) and f(t), a bewildering variety of pulse
shapes can be created by iterated convolutions of p(t) E ID with such h(t('s.
Th, -esulting waveform is always causal and C°¢ on the whole line. As a
si pie example, consider

A(z) = eM- 1), A real,

f(t) = 6(t - 1),
(4.6)

ht= eM -. Ž i6(t -T),

so that

V/2•1 hA(L-= e-A e (4.7)
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Let

a=v/2, b= v1-0, A =-0.5, =-1.5, (4.8)

and let s(0.5, t) be the unimodal pulse (2.4) with a= 0.5, shown in Figure A.1.
Form successively,

qI(t) = cis(0.5, at), q 2 (t) = (ql * h)(t)

q 3 = bq 2 (bt), q4 = (q3 * h,)(t). (4.9)

Then, q4 (t) is the pulse shown in Figure A.2.

Lety - (4a 2b 2 )1"4 , a = 21A + pI. Using i<_.8 ) and (4.7), we have

e -io , •¥1 I V.T•-14(L)I < Ce, -(( J~' (4.10)

Next, let p(-v, t) be the inverse Gaussian pulse (2.3). We observe from (2.7!
and (4.10) that if -v > (2a + 2e-Iy 0.58, then

ý4 (L)i

Choosing -v = 0.6, we see from (4.11) that the complicated non-positive
pulse in Figure A.2 is bounded below in Fourier space by the narrow inverse

Gaussian shown in Figure A.l. This relationship is shown graphically in
Figure A.3 where Iq4 (I)- (solid curve), and 2 .51p(0.6, ,)I- 1 (dashed curve),
are plotted as functions of discrete frequency 4a = k-7/10.24, k 1 l ... , 650,
using FFT routines. These considerations serve to motivate the following

definition.

Definition 4.1. A function q(t) is in class 73 if and only if q(t) is causal
and C- on the whole line, with lo(L)l ) 0 for all real "I and there exist an
infinitely divisible density p(t) t T) and a positive constant K = K(q,p),
such that

IplL)I
- -< K, i-real. (4.12)

'B includes all functions of the form q(t) = (p * h)(t) with p(t) i 'D
and h(t) of the form (4.3), and we have If(L)l/JI(.)( <_ I lb. In particular,
choosing h(t = b(t), it follows that 3) - 'B. Other transformations of

p(t) 7), possibly nonlinear, may also produce objects q~t) ( 0C.
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5. Deconvolution of class 3 probes

We view membership in 3B as resulting from perturbations of the originally
intended class 'T probe, caused by interfacing devices. Assuming the actual
mechanical pulse q (t) E 3, we use Fourier analysis to find p (t) E 'D such that
(4.12) is satisfied. As in Figure A.3, this may be accomplished by plotting
I(L)r- and adjusting the width parameter of the candidate pulse pit) so
that with a reasonable constant K, the curve KIP(£)4- 1 lies above the q curve.
We then let d(L) = fI(2/c(L), and refer to p(t) as the exchange pulse.

Suppose

(q g)(t) -e(t), t O, (5.1I

where e(t) is the output response that would have been recorded in the
aIbsence of noise. Let e, (t) be the noisy output data. As before, we assume

Sg M , 11 e - e ti , (3.2)

where i .. M. Let

b(c) - d(~ f ) ,(L) -C d(C)eC "(z1. (5.3)

From 35.2), (4.12),

h b,, - c, , Kp. 5.4

Fourier transforming (5.1) and using (5.3), we see that (p g)(t) - bit),
while b, (t) is the noisy output data corresponding to the exchange pulse
p(t) : 7). Thus, if q(t) ,' 3, multiplication of the output c,,(L) by the
bounded function dilL, reduces the deconVOlution problem to the class P
case, with bounded noise magnification, e = Kp. With W =c C M, we may
now construct the family of partial deconvolutions v x,0 tin ( 3.4) for which
the error bound (3.5) holds.

6. A numerical experiment

We now illustrate the foregoing development with a numerical reconstruc-
tion experiment using synthetic noisy data. Figure A.4 represents the theo-
retical!y calculated impulse response q(t) of a homogeneous infinite elastic
plate, where the source and receivers are on opposite sides of the plate, with
the receiver located at the epicenter [81. The sharp spikes are numerical ,-
functions, with support equal to one mesh interval At, and with height a/At,
the weights a being determined by the physics. The spikes, and other sin-
gularities, indicate the arrivals of elastic disturbances and their subsequent
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multiple reflections from the plate faces. The drawing displays normalized
displacement versus normalized time where

Normalized displacement = 7t x shear modulus x plate thickness

x actual displacement/force,

Normalized time = actual time

x shear wave speed/plate thickness

The presence of flaws would generate additional reflections, resulting in a
signature different from that shown in Figure A.4.

The pulse q 4 Mt) shown in Figure A.2, with t measured in normalized
time units, was used to simulate a distorted mechanical pulse applied at the
plate surface. While such distortion is substantially worse than is typically
the case in experimental work, the robustness of the deconvolution proce-
dure is best demonstrated by considering extreme cases. i he corresponding
epicentral response c(t) = (q 4 ý g)(t), evaluated by numerical quadratures,
is shown in Figure A.5. Each of g(t), q 4 (t), and c(t,, were calculated at 500
equispaced points on the normalized time interval [0, 51. Evidently, there is
little correlation between Figures A.4 and A.5.

Next, noisy data c, (t) were constructed by adding to each data value
q in c(t), a random number drawn from a uniform distribution in the range
r0.005y. A noise level of between 0.117, and 1 7, is believed to be representa-
tive of experimental co..ditions. The inverse Gaussian shown in Figure A.1
was used as the fxchange pulse, with corresponding data b,(t) obtained
from (5.3). With w - 1.0 • 10 s, the family vix, t) was evaluated using (3.41
at 16 equispaced values of x on the interval 0 < x - 1. The evolution is
shown in Figure A.h. In that drawing, the first trace, in the foreground, is

,, (t); the last trace, in the background, is the reconstructed q( t ). Although
there is no visual hint of spikes in the foreground trace b, (ti, early genesis of
these singularities and their subsequent systematic development as x 0, are
noteworthy features in Figure A.6. There is also an easily assimilated visual
relationship between succe,,sive traces, which facilitates pattern recognition.
These effects are a reflection of the diffusion process associated with the
exchange pulse 1(t ),

We remark that it is possible to apply the deconvolution algorithm
directly to (q 4 * 9i)(t) et0, foregoing the exchange option, by substituting
q., and c, for p and I,, in 13.4). In that case, the underlying Cauchy problem
(3.1) is not of parabolic type The resulting evolution is shown in Figure A.7.
While the last trace in that drawing is a good approximation to (1(t I, the
development of singularities is not easily discernible, as the non-positivity
properties of q.; (t result in a tortuous evolution of the data C,, (t) into l(t ).
In the presence of laws, where additional reflections can be expected to
produce fairly complex signatures, pattern recognition may not be feasible.
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A. Figures

2.5

Pulse in Eq. (2.3) with a = 0.6

2

SPulse in Eq. (2.4) with a = 0.5
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Figure A.1: Examples of unimodal pulses in class RD.

so Pulse q (t) in Eq. (4.9)

t: 0

3
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Figure A.2: Example of probing pulse in class 'B.
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Fourier space description of inequality (4. 11
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Figure A.3: Graphical idva behind Definitim 1 4. 1.
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3 20

w5

0 -

0 12 3 4 5

NORMALIZED IIUI

Figure A.4p Response of homogenous elastic Plate to Diracipu

function source, when source and receiver are on opposite ,ides of
plate, with receiver located at epicenter.
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20

Epicentral response to pulse in Figure A.2

a 0

o

0 1 2 3 4

NORMLIA~ZEQ lIME

Figure A.5: Response to probe pulse of Figure A.2 with test con fig-
uration as in Figure A.4.

Figure AA6 Continuous deconvolution of response in Figure A.5
after using exchange option.
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Figure A.7: Continuous deconvolution of response in Figure A.5
without use of exchange option.



Certain results on spatiotemporal random fields
and their applications in environmental researcht

George Christakos
University of North Carolina
CB#7400, 131 Rosenau Hall
Chapel Hill, NC 27599 USA
u:ncg~ch•_unc, bhitnet

a This work is about spatiotemporal random fields and their applications in
environmental research. Ordinary and generalized random fields are stud -
ied, and certain important classes of space nonhomogeneous/time non-
stationary random fields are derived. Results are obtained regarding the
optimal estimation and simulation of such fields in space and time.

1. Introduction

This presentation studies spatiotemporal natural processes, that is, processes
which develop simultaneously in space and in time. In Section 2 we discuss
the emergence of spatiotemporal natural processes in various branches of
physical sciences and address the fundamental hypotheses and problems
regarding the quantitative description of such processes. Several practical
issues of spatiotemporal data analysis and processing are presented antd the
variety of potential applications is reviewed. The latter is followed bv a
critical discussion of the inadequacies of previous works on the subject.

In order to proceed with the rigorous mathematical modelling of nat-
ural processes which change in space and time, one must elaborate on a
theory of spatiotemporal random field (S/TRf:). This theory is presented in
Sections 3 through 6. The preceding mathematical results act then as the
theoretical support for the discrete parameter representations, as well as the
optimal space-time estimation and simulation methods which are discussed
in a more practical context in Sections 7, 8 and 9.
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2. Spatiotemporal natural processes

Spatiotemporal processes, that is, processes which develop simultaneously
in space and time, occur in nearly all the areas of applied sciences, such
as: hydrogeology (e.g., water vapor concentrations, soil moisture content);
environmental engineefing (e.g., concentrations of pollutants in environ-
mental media-water/air/soil /biota); climate predictions and meteorology
(e.g., variations of atmospheric temperature, density, and velocity); and oil
reservoir engineering (e.g., porosities, permeabilities and fluid saturations
during the production phase).

In this context, important issues include: the assessment of the spa-
tiotemporal variability of the earth's surface temperature and the prediction
of extreme conditions: the assessment of space-time trends in runoff on the
basis of a spatially and temporally sparse data base; the estimation of the
soil moisture content at unmeasured locations in space and instants in time;
the reconstruction of the whole field of a climate parameter using all the
space-time data efficiently; the study of the transport of pollutants through
porous media; the elucidation of the spatiotemporal distribution of rainfall
for satellite remote-sensing studies; the optimal sampling design of meteo-
rological observations; and the simulation of oil reservoir characteristics as
a function of the spatial position and the production time.

The issues above are parts of the general problem of malY,4sis and po-
cessing of data from space-titn' physical pheioinena. In all these situations, the
spatiotemporal pattern of change of the natural processes involved possesses
a certain structure at the macroscopic level and a purely random character
at the microscopic level. The latter implies a significant amount of uncer-
tainty in spatiotemporal variation. Moreover, this variation is, in general,
space nonhomogeneous and time nonstationary (there may exist complex
trends in space, time varying correlation structures, significant space-time
cross-effects, etc.). Spatiotemporal variability plays an extremely substantial
role in the understanding, modelling and prediction of surficial processes,
in space-time. It is, also, very important in improving our basic knowledge
regarding the climatological influences on the hydrogeoiogy of a region. If
neglected, spatiotemporal-parameter variability of water management mod-
els may adversely influence management decisions.

Typically, space-time data analysis and processing problems have been
handled ur'der some convenient but rather simplistic assumptions. In hyjdro-
geology and water resources research, common statistical methods of analysis
create artificial decompositions of hydrologic processes-one in space and
one in time-and study them separately [25, 101; or focus on time averages
(monthly, seasonal, annual) of the hydrologic parameters; or make addi-
tional assumptions, like space homogeneity and weak time dependency
(e.g., 14]). The multivariate analysis concept which has been used in a num-
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ber of hydrologic problems (e.g., [111) accounts for the vector formulation
of the scalar time series model, where the component time series are cor-
related to each other. Variability in space is not taken into consideration
and the modelling of the combined evolution of theses series in space and
in time is clearly not an issue addressed by multivariate analysis. Similar
decompositions has been applied on some recent studies on the assessment
of Ireland's wind power resource (e.g., [17]). Moreover, classical statistics
and time-series methods have failed to provide a conceptual framework de-
termining the correlation structure of the spatiotemporal heterogeneity of
soil-water properties from local to global scales.

In environmental research the existing models (e.g., [2. 151) either applv
traditional methods of clabsical statistics which are incapable of capturing
important features of the space-time structure, or have been designed to han-
dle problems that are significantly different in nature than those arising in
the spatiotemporal data analysis and processing context considered above.
In particular, the class of classical statistics models does not determine any
law of change of the environmental parameters, and the relative distances ot
the sample locations/instances over space-time do not enter the analysis ot
the correlation structure. The second class of environmental models avail-
able concern, either specific space-time interaction systems where the input/
output physical parameters are treated at each spatial location as separate
time series, or the description of the system's transfer function by means o-
some special space-time patterns. These models do not provide an adequate
quantitative assessment of spatiotemporal variability in generi, and they
do not account for the space nonhomogeneous and/or time nonstationarv
characteristics of the environmental parameters in particular. In some re-
cent environmental studies the spatio-chronological order of the data is not
properly considered, and arbitrary but not well justified decompositions of
the correlation functions are assumed. Moreover, optimal reconstruction
schemes, which are general enough to cover the majority of applications
have not been developed; see, e.g., comments made in [28]; also by Bilonick
[3]; and by Rouhani and Hall [26] in a geostatistical framework. Space-time
models which are based on the distributed parameter concept [30] are not
in general appropriate for most environmental problems. These models
are assumed to be governed by a differential equation of a particular form
that does not represent adequately the majority of the spatiotemporal natu-
ral processes of interest; issues of stability, controlability and observability
involve serious difficulties.

In n'servoir characterization, space-time data processing does not exist at
present. Most of the techniques available exclusively account for the spatial
variation of geological reservoir processes, when in reality these processes
are simultaneously a function of spatial location and production time (e.g.,
120]). Also, current practices in data collection-with the exception of some
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oil sand deposits-do not account for time. The reasons that space-time
models do not exist at present in reservoir characterization is due to the fact
that the need for detailed and advanced reservoir characterization has been
recognized only recently.

The methods used for statistical climate mnodellintg and prediction are usu-
ally somewhat primitive versions of the methods used for weather analh'sis
and prediction (e.g., [12, 21, 31]). Many of them suffer the same limitations
with the methods used in hydrology. For example, the basic ansatz of mul-
tivariate techniques such as "principal oscillation pattern" and "principal
interaction pattern" [311 is based on the arbitrary assumption that the space-
time characteristics of a low-order system are the same as those of the full
system. Also, important issues such as the characterization of spatiotempo-
ral intermittency or spottiness in rainfall as it pertains to various notions of
scaling as well as the physically observed features of clustering, growth, and
decay of convective cells, and larger-scale spatiotemporal forms observed
in mesoscale rainfall systems cannot be addressed by the existing statistical
methods (see, e.g., [9]).

In globil warming research, aspects of current interest are as follows:

1) Many eminent authors claim that while one certainly cannot assert
that no warming occured, the existing statistical analysis of earth's
surface temperature data is unable of providing adequate assessments
regarding temperature's space-time variability and it does not lead
to convincing arguments supporting the concept that changes at the
macroscopic level are due to greenhouse warming rather than to space-
time natural variability (e.g., [211).

2) In water resources management the existence of a warming trend raises
the question whether the global warming has been sufficient as to
translate into a corresponding change in the spatiotemporal structure
of runoff series. Again, current statistical analyses of runoff series are
subject to serious question given that they are based on observations
relating to a spatially and temporally sparse data base and they as-
sume no model about the underlying spatiotemporal evolution of the
runoff series.

Clearly, the temperature data in Item 1) and the rainfall series studies in
Item 2) above are typical examples of analyses where the theoretical models
used are incapable to provide adequate representations of the spatiotempo-
ral variability and, hence, they cannot give satisfactory answers to crucial
questions concerning climate and water resources problems.

The main reasons for such-clearly inadequate from various view-
points-analyses of spatiotemporal data should be attributed to the fol-
lowing facts: (i) the importance of spatiotemporal variability in the study of
space-time phenomena was not fully appreciated until recently; and (ii) most
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of the theoretical tools and mathematical techniques of data processing avail-
able have been designed to operate exclusively in time (time series methods;
e.g., [16]) or exclusively in space (random fields, geostatistics; e.g., [22, 32,
331). Undoubtedly, the literature on the subject of applied space-time data
analysis and processing is very limited and most aspects of importance in
the analysis, modelling and estimation of spatiotemporal parameters have
not been studied adequately.

In view of the foregoing, the following conclusions are drawn:

1) Any modelling assumption should reflect adequately the macroscopic
and microscopic evolution characteristics of the underlying processes
over space and time. The latter is a requisite for the understanding
and prediction of spatiotemporal processes in hydrogeology, climate
modelling and environmental pollution monitoring and control.

2) Due to the random character in the variability of the data at the micro-
scopic level, these processes must naturally be described stochastically;
the concept of randomness should be viewed as an intrinsic part of the
space-time evolution, and not only as a statistical description of possi-
ble states.

3) The proper model should be capable of assessing quantitatively any
space nonhomogeneous/time nonstationary variability features and
to provide efficient solutions to practical problems, such as space-time
estimation.

Taking these issues into account, it seems quite reasonable that the
concept of an S/TRF is the appropriate stochastic model for spatiotemporal
processes. Within the framework of the S/TRF model, space and time form a
combined process having simultaneous and interrelated effects on the evolu-
tion of the natural variable it represents. Suitable methodological hypothe-
ses and operational tools assure that the mathematical concept of S/TRF is
compatible with the physics of the variate it describes and, thus, it is applica-
ble in practice. Lastly, conclusions regarding the spatiotemporal variability
(trcnds in space, periodicities in time, nonhomogeneous/nonstationary cor-
relations, etc.) can be established in terms of duality principles that relate the
mathematical notions and the physical behavior of the process they model.
Here, stochastic spatiotemporal correlation functions provide the means for
structural inferences.

In general, the objectives of spatiotemporal data analysis and process-
ing are: (a) to assess quantitatively the spatiotemporal variability of the
natural processes of interest (degree of regularity, continuity, non- homoge-
neous spatial features, nonstationary characteristics, etc.); and (b) to provide
efficient and computationilly attractive procedurec for dpriving ontimal (in
a well defined mathematical sense) and physically meaningful estimation

L_
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maps of the natural process, at unknown points in space and/or instants in
time, based on fragmentary space-time data.

Of course, the outcomes of space-time data analysis and processing
may be not an end in themselves. Several important consequences will
emerge in the context of earth sciences. More specifically:

1) A deeper understanding of the physics of the space-time processes
will be obtained. For instance, knowledge about the spatiotemporal
variability of the various climate parameters will improve our basic
understanding of how the global climate actually functions.

2) The predictive capabilities of many computer-based differential equa-
tion models in hydrology and environmental research, are limited be-
cause the parameters of the models are difficult to determine. Much of
this difficulty may stem: (a) from the spatiotemporal variability of the
media, and (b) from identifiable differences in initial physical assump-
tions. It is, hence, of significant importance to understand how (a) and
(b) influence the outcomes of modelling.

3) Space-time data analysis and processing will provide the necessary
means for solving important problems in various areas of water re-
sources. Information about the spatiotemporal-parameter variability
of a water resource system will allow the detailed simulation of the
system and will influence considerably management decisions. The
assessment of the spatiotemporal variability of pollutan, concentra-
tions will provide the knowledge needed to monitor and control envi-
ronmental pollution. S/TRF simulations of the anticipated effects on
surface temperature due to the increase of carbon dioxide in the atmo-
sphere over a specific time period will provide valuable insight into
the study of global warming issues. In connection to this, the possible
effects of the coupled increase of precipitation and temperature on the
hydrology of a particular region can be determined; then, conclusions
could be derived about the incorporation of climatic changes into the
planning of future earth systems, and the modification of the operating
rules of existing water resource systems.

A S/TRF is termed continuous parameter or discrete parameter ac-
cording to whether its space-time arguments of an S/TRF take continuous
or discrete sets of values.

3. Ordinary spatiotemporal random fields

3.1. The basic space-time notions

Let s = Is, s2 ...... ,., ) i " (!N " is the Euclidean space of dimensionahty
rt >, 1) with Isl = V/[F_ý-2,nt T(c •1 =s? ad ET TC R =IEo1 : t >_ 01).
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In the Cartesian product 91' x T let (s,t E 91" x T) denote space-time
coordinates, such that UI s, t)12 = 1512 + t 2. We also define (s, t)a,' = s-tO =
s" s2 ... sl,,tO, where 3 is a nonnegative integer and -L= (cxI, Cx2 .. (X,)

is a multi-index of nonnegative integers such that h•I = aci and o! -
ax I !2! ... 0(n!

We define some spaces of spatiotemporal functions X(s, t) in 91  T,
which are useful within the framework of the present study: The space C
of all real and continuous space-time functions with compact support (i.e.,
they vanish outside some bounded region). The space K of all real, contin-
uous and infinitely differentiable functions in space and time with compact
support. The space S of all real, continuous and infinitely differentiable
functions which, together with their derivatives of all orders, approach zero
more rapidly than any power of 1/1(s,t)l as I(s,t)l - oo. Notice that S D K,
as all functions in K vanish identically outside a finite support, whereas those
in S merely decrease rapidly at infinity. Spaces K and S are of particular im-
portance in this study. The topology in K and S is in the sense of [27] where,
in view of the aforementioned space-time considerations, the argument is
now (s,t) E 91" x T.

3.2. Definition of ordinary spatiotemporal random fields

Let (0, F, P) be a probability space, where ) is the sample space, F is the U-
field of subsets of 0 and P is the probability measure on the measurable space
(0, F) satisfying Kolmogorov's axioms; let z = (s, t). We denote bv X1 k
L2 (0, F, P) the Hilbert space of all continuous-parameter random variables
x .,..... x. defined at _ .. z4, and endowed with the scalar product

XlX2 ) = E[xlx 2 J = fX1 X2 dFx(x1 ,X 2) (3.1)

where Fx(Xl,x2) denotes the joint probability distribution of the random
variables x, and x2, while

I!XI1 2  
- EIx12  x- 'X2 dF,(X) < oo, (3.2)

where FX(XI denotes the probability distribution of x. Usually F,(x) and
F•(XI,X 2 ) are assumed to be differentiable so that they can be replaced by
the probability densities f, (X) and f, (X1, X2).

Definition 3.1. The ordinary S/TRF (OS/TRF) X(s,t) is defined as the
function on the Cartesian product 91" V T with values in the Hilbert space
L 2 (M, P, F), viz.

X : " T --i L2 (0,F,P) (3.3)
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Just as for purely spatial RF (SRF), a S/TRF X(z) = X(s, t) is specified
completely by means of all finite dimensional probability measures 4-. (B)
associated with tbe families of random variables xi,..., xm at z 1 .. ,

ýL. (B) = ýi_.. ..... .,, (B) = P[(xl,....- x,) E B] for every B E 'I n

(30 is a suitably chosen a-field of subsets of 91') and all m = 1, 2.... The
corresponding probability density functions are written as

f.(XI .... Xm) dXl ... dXm = fz ..... z,,(Xi,....X.m)dX1 ... dX,
P[x1 <, x(_zI) <_ xi + dX,,.....XT, <_ x (_z..) _< X,, + dX,,I. (3.4)

for all m. All OS/TRF to be considered will be continuous in the mean square
sense, i.e., EIX(s',t') - X(_s,t)12 -4 0, when s' -4 s and t' -• t. Moreover,
OS/TRF are, in general, taken to represent space nonhomogeneous/time nonsta-
tionary natural processes (e.g., spatiotemporal history of soil shear stresses
during an earthquake, oil reservoir porosity distribution in space-time dur-
ing the production phase). The space of all continuous OS/TRF will be
denoted by X.

In the sequel we will consider second-order OS/TRF, that is, the anal-
ysis will be based on second order statistical moments which are assumed
to be continuous and finite. More precisely, an OS/TRF X(s, t) will be char-
acterized in terms of its spatiotemporal mean value

m.(&s,t) = E[X(_s,t)] = JxfX(X) dX, (3.5)

the centered spatiotemporal covariance function

C(st;_s',t') = E[(X(st) - Mr(s,t))(X(s',t'} - mn(s',t'))]

=fl(xI -MI)(X2-M2)f-(XI,X2)dX, dX2 (3.6)

and the spatiotemporal semivariograni or structure function

yx(s,t;_s',t') = ½E[X(_s,t) - X(s',t')1 2

I f(X I - X2) 2 fx(XI,X2)dX1 dX2. (3.7)

A continuous function c,(s, t; s', t') is the covariance function of an
OS/TRF if and only if it satisfies the nonnegative-definiteness condition

InZ ki •.ki

F T--" qiqi, ,c (si,tj;sýi,,tj,) ý,> 0 (3.8)
i 1 I , I i' i' 1't
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for all m, ki, ki, (= 1, 2 .), all Ifs, t,) ý R" , F and all numbers (real or
complex) qij, qj,'j; here ki denotes the number of time instants ti, j 2,, A,

ki used, given that we are at the spatial position s,.
Instead of the centered covariance function one may also define the

non-centered spatiotemporal covariance function
Or,( , t ' tC) E E X (S, t) X(S', t') I

C' C ( S, t.s,S, ti rrI, (s , t )n T11 , t , .

The other mode of second-order analysis is that in the frqti'ucy dotltl
The harmonic expansions of X(s, t can be considered as an extension in the
space-time context of the relevant results for SRF (e.g., [7]). In particular (for
simplicity's sake, the symbol 9N" 1 under the integrals will be omitted in thlt
following)

X(s, t) expri(,w 4s At MX w, A) diy d,\, (3.101

where i 1 \ -1, and Xlii, A) is the so-called spectral amnplitude of XiS,, t).
The corresponding spectral densitY function C, (v, A: w', •) is defined by

c•• ts.tI: jJ; Jexp:•,x ,.s 'wv'.s'+ At ,'t'l'

C, IV, X: "N', I\' ( dwd di_' dV, (3.11

where C,1w,XA:,y v'.A') is a positive summable function in N" - F. The
C•(x,YAkw',VA) forms an 9V" . -fold Fourier transform pair with the spa-
tiotemporal covariance c, Is, t: s', t'I.

3.3. Space homogeneous/time stationary spatiotemporal random fields

An OS/TRF X(s, t), (s, t) e ," , I will be called space honiogeneous/tinme
stationary in the strict sense if all the multidimensional probability densities
are invariant under the translation z -i z - b-z (where, as before, z - (s, t I):

Plx1  •xIz) _< X1 - d...X,,, _< xlz,.,) -. X,. +- dx,r! -

PIXI <_ x(z 1 +6z) ) ( + dX .1 X,, <ý x(;z,,- +6z)

M X,,, -t dx,.1 , (3.12)

or

f ,, ,(x ..... x , .... ,, ..... X, (3.13)
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for all mn = 1, 2.... Space homogeneous/time stationary RF occur, for exam-
pie, in the case of blackbody radiation within a large cavity maintained at a
constant temperature.

An OS/TRF X(s, t) will be called space homogeneous/time stationary
in the wide sense if its mean and covariance do not change under a shift of
the parameters, i.e.,

m, (s, t) = constant (3.14)

and

C•, (S,t; S', t,) C,(11, T), (3. 15)

where h1 = s - s' and T = t - t'. In other words, there exist in the closed
linear subspace H spanned by the random variables x in L2 (A, P, F) a group
of unitary operators U1

h., such that

U 1, "X (s t0 = ý, X (s, t), (3.16)

where s,,i - 91" and t,-r E f (here, SjTX(s,t) = X(s - h,t -4 ") is the
shift operator). It is easily seen that in the case of space homogeneous/time
stationary fields the covariance (3.6) and the semivariogram (3.-) are related
by (assuming a zero mean field)

C\[, r (ýI TI -C,(0, 0) -Y., (b.,T). ( .7

The set of all space homogeneous/time stationary ordinary fields will be
denoted by :V,, :'h.

The space homogeneous/time stationary RF X s, t ) admits the Fourier-
Stieltjes representation

X(s,t) ifexp~i(w sIdXiw,\, (3.18t

where , %%w, A) is a random field such that C,(w,A)6(w w') (bA -V)
E~dgX (', A)dX• (w', A' I), where C, (w, A) is the spectral function satistVing
the spectral representation of the covariance c, (1, "T), viz.

C (h -1 exp[i(•,_, + AT)I2, (_W, A•) dw d;•, (.

and

C, (w, A) exp[ i)w -h + w.h rlct ffi,(hrdd-r. (3.20)

Since the covariance c, (h, lT) is a nonnegative-definite function, accord-

ing to Bochner's theorem

C, (Vv,,A) ? 0 (3.21)
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for all vv, A.
The c Ih, T) will be termed space-time separable if

c, (h.,y I - C, (h1)C,(T). (3.._2 i

Clearly, this implies C\ Kv,,) - C,( A,(X). When phys'ically justified,
separability is an extremely convenient property from a mathematical point
of view.

In practice, one usually makes an additional assumption, namely that ol
space isotropic/time stationary RF: the covariance and spectral tunctlons arO

c, (ý, ) C, (r, T), .2

and

C, ("', AI C, C ((tu,,), 13.2.1

where r - ,ji and W -- 11.
In order that c,,r,-T be a covariance function Of a space, is'otroplc

time stationary R,, it is necessary and sufficient that this function admits a
representation of the forn,

c,(r, - 2n)- 2 -, ,Ai .iAT .W

C\(, AI d'dA, 3.25

where C, j(,,A I- 0 on the half-plane IL,,, A) IL' 0, , X, , X, . ,
similar condition holds true in terms of the semivariogram in (3.17 I.

Other combinations of spatial homogeneity and t mporal stationantv,
in the strict or the wide sense, are also possible [7]. Lastly, the space-time
covariance, satisfy relationships similar to those for purely SRI; for example,
for a time stationary S/TRF (in the wide sense) it is valid that

4. Generalized spatiotemporal random fields

4.1. Definition and basic properties

In dealing with space nonhomogeneous and/or time nonstationary natural
processes it will be useful to introduce the notion of generalized S/TRF.
The latter is an extension in the space-time context of the notion of random
distribution due to Ito [181 and Gel'fand 1131. Let Q be some specified linear
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space of elements C1 and let h: I U, P, V be the I lbet t pace Il t111
random variables xi q) on Q endowed with the scalar product

XC1 Ix q 2 \(( I X~ l~x.{ ,i .X: 0l1 "(.," ,

where F! I, X- denotes the joint probabtlt dstribut OC iit the r ld , n ITt -

ables xcl ,xCi \%'ith q) 1 I I- and tI I 5 m1:ý t %h v 11

linearity condition

tor all cl, ) and all (real or onipl\itbi 'r- ," I ,
elements c; Q arein . 1 i.eI , I Vlt , ), tti .,

tsuitable for the purpose of this ýstud a, iw t p,-e, K tcd S o ,t ,-.k

Definition 4.1. A igeneralized 5. FRFI(, FNIt) in t h-,i raT :vl

mapping

X:Q .[1 0i),fP .

The ( ;"- ,/TRI. considered wvill always, ISOmCd to be COTltlnlnloul. Il•,!(
sense that I XV : V o 1 0 %%he) ci, L! Yb et' -L't 1 t( lnt 11t1:1,

GSiNTRP on Q will be, denoted by 9.

The seVConId order characteric, ot the k C ) Tf l\ arc R O h 1.•tmin , l

mlleall value

ni, (Cj |f 'X (q I' J , . , X ). l,

where V, (X) denotes the probability distribution of X( l ), and the

c.x I U, ) -- F rX(ql ) - i ,(ql 1) (X(q 2 ) i ll, (q-, ).)

which will be called the (centered) spatiotemporal covariance t -letional ot
the GS/TRF X cij. Both the mean and the covariance tunctional will be
assumed to be real-valued and continuous relative to the topology of Q.
Also, a useful second-order characteristic is the spatiotemporal structure or
semivariograin functional which is defined by

"y,(ql,w2  - I[X q X(q2 U2. (4.6)

Finally, mathematically equivalent space-time second order functionals may
be constructed in the frequency domain by taking the Fourier transform of
the covariance and the semivariogram functionals.
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4.2. Continuous linear functional representation
of generalized spatiotemporal random fields

In the sequel we will concentrate on GS/TRF which are of the continuous
linear functional form (CLF)

X(q) --(qls,t),X(_s,t)) = &f q(s,t)X(s,t) dsdt, (4.7)

where q E Q and X(s,t) is an OS/TRF in the sense of Definition 3.1 above.
Depending on the choice of the function q, the CLF (4.7) may admit a variety
of physical interpretations. Let us consider the following example.

Example 4.2. Assume that X(s, t) represents the concentration of an aerosol
substance in the atmosphere. By choosing q(s, t) = 6(s - s* )6(t - t" ), (4.7)
gives the value of the substance at the point/instant s, t. If one let

q s ) I, if s E V and t E It1, t2l
q(st 0, otherwise,

(4.7) provides the total amount of substance in the volume V during the time
period ItIt 2 1.

Since a GS/TRF X(q) cannot be assigned values at isolated points/
instances (s,t) (unless q is a delta function), we introduce the following
field.

Definition 4.3. A convoluted S/TRF (C-S/TRF) is defined as the S/TRF

Y, (_s,t) - (q(s',t'),S,, X(s',t'))

f ft q 't'}S•.X(s',• i d sý d '. (4.8)

We can now make the following observations: The CS/TRF (4.8) is
characterized by Y.((O,O- Xc(j for all q ,- Q. Also, it holds true that
Yq(s.t) = S,., X(q) = X(S ,--t) for all q r7 Qand all (s,t) q IN" • T. The
space X of OS/TRF may be considered as a subset of the space q of GS/TRF,
viz. 'K ii 9. Moreover, the fields X(q) and Y.1(st) have certain important
properties, as follows.

Property 4.4. The means and covariances of X(q) and Y,(s, t) write

rnm (q) = EIX(q)] = (m,(s,t), qIs,t)), (4.9)

in (S't) - L l.Y,(s, t}j m-,-( ,, W ,,t'), q~s, ) (4,10)



{ Christakos 30(0 }

and
c .,(qI, q2) F F_(X(qj ) - re (q, )) (Xlq2) - M ,,(q2))]

= (c, (s, t:s', t' ), qI (s, t)), qz (s', t')), (4.11)

CN (s,t:s',t', E [(Yq{ )s,t)- my(s,t))(Y 1 (s',t') - y(s',t'))1

q2 (s'", t. ) . (4.12)

The means and covaria:,ces of the GS/TRF and CS/TRF are linearly related to
those of the corresponding OS/TRF. From (4.10) and (4.12) we find that the
corresponding mean values and covariances functions write, respectively.

n , (q) T= N(0,0), (4.13

c, Iq 1, 02 cI)O, 0: 0,0). (4.14)

Property 4.5. The covariance functional of the GS/TRF X(q) is a nonnegative-
definite bilinear functional in the sense that

c,(q,qI (:Xlq) -- nl1q)) 0 [..151

for all q , Q. Conversely, every continuous nonnegative-definite bilinear
functional c, ( 1, q,-) in Q is a covariance functional of some GS/TRF X(q).

Property 4.6. The fields X(q (and Y, (s, t) arealways differenliabhc, even when
X(s, t) is not. To see this assume Q -- K and let

Xf P'c (q) ýq(s. t), XI")c'l (s,t)

- ffq(st)X IC"(s,t) ds dt, (.16)

where C, is a nonnegative integer and p (P ,P2,. .. 'isa multi-index of
nonnegative integers; i.e., the superscript (p, ,) denotes partial differentia-
tion of the order p in space and differentiation of order C. in time

X, '• (s, t) D 'P",-ý-I s't)- s" . s " X(.s,t 0 (4,17)
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where p p, pi = P•. By applying integration by parts (4.16) writes,

X(P-•')}(q) = (-I)oP •LX(q(_`.,)). (4.18)

Similarly for the CS/TRF,

fp') - ( .19YI- (,•t) = (-])P I ýS,- q. L ) -..

Therefore, although there may exist no X(-•' as such, we can always

obtain X•-h'-•(q) and Y, -I P. in the sense defined above.

Property 4.7. By applying the Riesz-Radon theorem in terms of generalized
functions we find that the mean m, (q) can be written as

q)= K£ £ qý- Itst) (4.20)

where-v and I are nonnegative integers, q(s, t) Kand fo, s(, t) are contin-
uous functions in 'N" , T, only a finite number of which are different than
zero on any given fin:te support U of K. Integration by parts yields

7, (q!- Y _ Y (- )I ' f' : 'l l q (s,'t)o, . (. 211

A similar expression may be derived for the mean mi s. t 1 of Y, •s, t 0. namely

"I , (S 0 Y f( -l )., S, f" f t') , t'). ... 22)

For convenience in the subsequent analysis let us put g,, (s, tI f' Is,t .
Closely related to Property 4.7 is the following section.

4.3. Space homogeneous/time stationary
generalized spatiotemporal random fields

A GS/TRF X(q), q(s,t) i• Q, (s,t) : 9`1" - T will be called space honio-
geneous/time stationary in the wide sense if its mean value , (q I and
covariance functional c, (q 1, q2 ) are invariant with respect to any shift of the
parameters, that is

m,( ((.23)

cI(ql,q2) cý(S!h.Tqj,S],.Tq2), (4.24)
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for any (h,-r) E 91" x T. Clearly, when the X(q) is space homogeneous/
time stationary the c,, (q 1, q2) is a translation-invariant, nonnegative-definite
bilinear functional on Q, and the following proposition can be proven [61.

Proposition 4.8. If X(q) is a space homogeneous/time stationary, GS/TRF
on Q, there exists one and only one generalized functional c, (q1 , q2 ) E Q'
such that (X(q 1 ),X(q 2)) = cx(ql ,q2), ql ,q2 E Q.

We shall denote by go the set of all space homogeneous/ time stationary
generalized fields. Note that Xo C So C S. Similarly, the CS/TRF Y, (s, t) is
called space homogeneous/time stationary if

my (s, t) = constant, (4.25)

and

cy(_s,ts ',t') = cy(h,T), (4.26)

where h = s-_s', t t-t', for any (hr) E 91' x T. In view of (4.22)
and condition (4.23) it follows that the functions fp,c(s,t) are constants.
Therefore

g •s,t) = fOLt(st) = 0 forall p >_ 1, 1 (4.27)
= f .(s,t) = m for p ==0

= 0.

and the mrx(q) will have the form

m"(q) = TnJq(st)ds dt = m(q(s,t),l). (4.28)

The c. (q I, qf ) E Q' can be expressed in terms of the corresponding c, (h, -T)
as follows

cx(ql,q2) = (c.(h-,T),q * q2(]•,t) = cx(qI * 012), (4.29)

for all q 1, q2 E Q, where * denotes convolution anddenotes inversion (i.e.,
q 2 (h, T) = q2(-h, -T)).

Example 4.9. Let us define in R1 × T a zero mean Wiener S/TRF W(s,t),
s E fsi, s2A, t E [0, oo) as a Gaussian S/TRF with covariance function

c, Is, t; s', t') minIs - s , s' - s2) min t, t'). (4.30)

The X(st) a= -will be zero mean white noise S/TRF with co-
variance function

c'(hT) = 6(Mh,-rl, (4.31)
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where h s - s', T = t -- t' and 6(h, t) is the spatiotemporal delta function.
The corresponding GS/TRF X(q) = KX(s, t), q(s, t)) has covariance

c,,(q I,Q2) = S(q, * ql2). 04.32)

The above results can be generalized to more than one spatial dimen-
sion. More specifically, one may define in 911 x T the so-called Brownian
sheet W(s, t) which is a zero mean Gaussian S/TRF with covariance

c, (s, t; s', t') = min (s I, sl )... min(s,, s',, min (t, t'). (4.33)

Brownian sheet has important applications in the context of stochastic partial

differential equations.
In the light of the Fourier transform properties of generalized functions,

it is valid that C,(ql,q2) =- (cO,ql - (-. 02 i), which yields the
following result (see also [6]).

Proposition 4.10. Let X(q) be a GS/TRF in U" ., T. The covariance functional
writes

c,(ql,q2) = fIfq,(w,A)J2 (v,,) d4(,,), (4.34)

where ý 1(w, A) and q2(W,A I are the Fourier transform of the qI(st) and
q2 (s, t) respectively, and Vw, ,\) is some positive tempered measure in 91" -
T. In this case the d.IA, A) is called the spectral measure of the GS/TRF X1 q).

Example 4.11. Consider once more Example 4.9 above. Since cx Wq , q2) =

(c,, . q I 2) = ' o,1 qq2, and the Fourier transform of c, - 5 is dw dA
(Lebesgue space-time measure), we conclude that the spectral measure of
X(q) is d~p(w,A)l = divdA.

Space homogeneous/time stationary analysis yields the next property.

Property 4.12. The CS/TRF Yq(,,, t) can be zero mean space homogeneous/
time stationary even when the associated OS/TRF X(s,t) is space nonho-
mogeneous/time nonstationary. This can happen under certain conditions
concerning the choice of the functions q(s,t) as well as the form of the
functions gc (s, t ). More specifically, we must define spaces

Q ,, -= fq c Q : (q(s,t),gp,.(5s,t)) = 0 for all p <_ -v,C C k], (4.35)

and

Cvd, = g Js,_t) E C : (q(S,t), gp,,(S,t)) = 0 =•

ýq(s, t), Sh,Tg ,C (s, t)) = 0 for all p <_ -v, C < ri), (4.36)

where C is the space of continuous functions in 9q" x T with compact support.
(4.35) assures a zero mean value for the CS/TRF Yq.(s, t) at (s,t0 = (0,0),
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while the closeness of (C,1, to translation (equation (4.36)) is necessary in
order that stochastic inference about X(q) makes sense (i.e., in order that
the stochastic correlation properties of X(q) remain unaffected by a shift
Si,, of the space/time origin). Functions that satisfy these conditions are of
the form

gi 1 (J,t) - _s!tý expf_ ' + Pt0, (4.37)

where _X and )ý are (real or complex) vector and number, respectively.

From a practical point of view, the modelling of spatio-chronological
variations and the estimation of spatiotemporal processes is easier and more

efficiently carried out when the g,, (,s, 0 are pure polvnomials, viz.

q ,:s,t) 5s-t• - sý's . .. s,,S'" t'.

where p P! _ , pi. This is due mainly to convenient invariance and
linearity properties that the latter satisfy. In conclusion, the "derived" fields
X(q) and Y, (st) have a very convenient mathematical structure. From a
physical viewpoint this means that even if X(s, t represents an actual natural
process which has, in general, very irregular, space nonhomogeneous/time
nonstationarv features, we can derive fields X)q) and Y, s, t) which have
regular, space homogeneous/time stationary features. Hence, anahlsis and

processing are much easier.

5. Spatiotemporal random fields of order--v,'4
(ordinary and generalized)

5.1. Random fields with space homogeneous/time stationary increments

We now come to what is, for our present concern, the most interesting aspect

of S/TRF, namely the concept of S/TRI with space homogeneous/time
stationary increments of orders v in space and ýi in time, in the ordinary or
in the generalized sense.

Definition 5.1. A CS/TRF Y,(is, t) will be called a CS/TRF of order v in
space/'p in timne (CS/TRF-'v, p) if q - Q, ,. In this case the space Q, ', will
be termed an admissible space of order v,,4 (AS--v/p).

Definition 5.2. l~et Q,,. be an AS-v/p. A GS/TRFX(q) with space homuo-

geneous of order v/time stationary of order .L increments (GS/ TRF--v p) is
a linear mapping

X:Q , Q L2 (0, F, P), (5.1)
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where the corresponding CS/TRF Yq(_, t) is a zero mean space homoge-
neous/time stationary for all q c QV,i. and all (h, T) E 9M" x T.

The set of all continuous GS/TRF--v/ýt will be denoted by 9.,/.. The

definition above is equivalent to the following one, which we unfold in an
extended Ito-Gel'fand spirit:

Definition 5.3. A GS/TRF--v/ 1 i X(q) is a GS/TRF for which all differential
operators of the form

y(q) - D•. 11,11, 'X(q), (5.2)

where D" ' 1,t 1 'X(q) = X(v Ii(q) _- (-I )v IL 
2X(qil i I , 1 arezero

mean space homogeneous/ time stationary generalized fields.

The OS/TRF associated with the space S., will be defined as follows.

Definition 5.4. An OS/TRF X(s,t) is called an OSiTRF of order "v,ýt
(OS/TRF--vi/ ) if for all q (ý Q.,/, the conresponding CS/TRF Y, (S't) is

a zero mean space homogeneous/time stationary.

In light of Definition 5.4, if the

Y(s,t) = D(v r 1.kf Ii X(st) = XfV 1, II (' t) (5.3)

exist and are zero mean space homogeneous/time stationary fields, then the
X(s, t) is an OS/TRF-v/'i4.

In connection with this, the following propositions can be proven [6].

Proposition 5.5. The solutions of the stochastic partial differential equation
in R1  T

D "- 1' lX.tt i {s, t = Yls,t), (5.,11

where Y(s,t) is a zero mean space homogeneous/ time stationary, are
OS/TRF-v 'ýt. Note that in this case the

Y(q) = \q(s,t),Y(s,t)'

= (q(s,t),Xý " (s,t ,
V IL

I' 1• y0) (5.5)

is a space homogeneous/time stationary generalized field.

Proposition 5.6. The OS/TRF

V ItX~s t, = - T (3,g ,(s , 5.6)

P OC 0
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where ý3j,, (p _< -v and 4 < s)are random variables in Wfk = L2 fO,F, P), is
an OS/TRF-v/i.

In view of (4.7) and (4.8), to each generalized X(q) correspond various
ordinary X(s,t), all having the same CS/TRF Y,(s,t) = X(S-,._tq); that is,
we can write

X (q) X' { (st), a l2....
,T IT (5.7)

q) X(St q(St)

Hence,

Definition 5.7. The set Xq = X' (s, t), c = 1, 2,... }of all OS/TRF--v/, which
have the same CS/TRF-v/ýi Yq((S,t) in Q will be termed the generalized
representation set of order v/4 (GRS-vl/0. Each member of the GRS--v/ p
will be called a representation of the X(q).

We can now state the proposition below [6].

Proposition 5.8. Let XC(s,t) be a representation G X•,, of X(q). The OS/TRF
X' (s, t) is another representation if and only if it can be expressed as

X"(s' t) = X" (s' t) + P. 9 c ,(gI(S(' t), (5.8)

where the c,c - v and C ý p are random variables in [ 2 (0), F, P) s.t.

,C -" b (,: t) (_s, 0)), (5.0)

where the Tj,js, t) satisfy the

I if p = p' and C ='(1•,,(s,t),g.,,..,s,t)) = ~_0 otherwise. (5.10)

An OS/TRF-v/,' is not always differentiable. It can, however, be ex-
pressed in terms of a differentiable OS/TRF-v/ýi as shown in the proposition
below [61.

Proposition 5.9. Let X(s,t)be a continuous OS/TRF-v/4. Then it follows

X(_s,t) = X*(s,t) + Yq(s,t), (5.11)

where X*(s,t) is an infinitely differentiable OS/TRF--v/p and Y' 1(s't) is a
space homogeneous/time stationary random field.
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5.2. The correlation structure of spatiotemporal
random fields of order-'v/.l

In this subsection, we will study the spatiotemporal trend and correlation
structure of a S/TRF--v/ji In view of the preceding results, the generalized
field XV',1 (q) = (-1)v+"X(q(v.P)) has constant mean, i.e., we can write

E[X(1Vl)(q)] = m('I)(q) = (-1)+IIa×(q(v4I)) = aý(_,O), (5.12)

while the covariance functional is expressed as

• (v*-li+l) (V+lI +l) (v + 1. (v 1 l I 1)cx X(1  q )X(q 2  )]

- E[X(v+lP+l) (q )X(v+l~ 1)(q2)1

=Cy(ql,q2). (5.13)

But as was shown above, the cy (q 1, q2 ) in (5.13) is a translation-invariant
bilinear functional and, therefore, so is c, (q (lV , q2 ). Taking
into account the properties of bilinear functionals (for the relevant theory
see 114)), (5.12) and (5.13) lead to the proposition below.

Proposition 5.10. Let X(q) be a GS/TRF-v/.L in 91'f x T. Its mean value and
covariance functional have the following forms

rm.(q) = T T ae'(s-t t 'q(s t))

= : ~ E..EPa,, 2 P,.c(sASW"sV ... SP"tC',q(s,t)), (5.14)
P 2 t'," c

where ac are suitable coefficients, 0 _< p = Ip - 1 pi < -v; and

c.(qI, q2) = ifJ hiw,A) (wAd4cj(w, A)

+ ý, ), 02(V +1 (0,0)), (5.15)

where 9! = 9R" - [0} and 3 = T - f0}, 'P× is certain positive tempered measure

and G is some function in q I(0,0) and 0 (v ( 0 0).

We proceed with the analysis of the spatiotemporal correlation struc-
ture of OS/TRF--v/!t by introducing the following definition.
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Definition 5.11. Consider a continuous OS/TRF--v/!L X(s, t). A continuous
and symmetric function k, (_1, -r) in 91" x Tis termed a generalized spatiotem-
poral covariance oforder-v in space and p in time (GS/TC- -vl/) if and only if

(X(ql ),X(q 2 )) = (k.(h, T), q, (s,t)q(2s',t')) > 0, (5.16)

where h = s - s' and -r = t - t', for all q1, Q E Q,/,.

In other words, in order that a given function be a permissible model
of some GS/TC-v/It it is necessary and sufficient that the condition (5.16)
is satisfied. We saw above that with a particular GS/TRF-v/p X(q) we can
associate a GRS-v/iý Xq whose elements are the corresponding OS/TRF- -v/p
X(s, t). Similarly, with a particular X(q) we can associate a set of GS/TC--v/p
satisfying Definition 5.11; this set will be called the generalized spatiotempo-
ral covariance representation set of order -v/ p (GS/TCRS-v/!t), and will be
denoted by T-, The concept of the GS/TC-v/kL k, (Ih, -r) can be considered
as the space-time extension of the purely spatial generalized covariance in
the sense of [221.

We will see below that some interesting properties of 'T- , may be

obtained by assuming that the GS/TC--v/ýi is space isotropic, that is

k I, T) =-- k, (r, T), (5.17)

where r = li.

Let us now explore (5.13) some more in light of Definition 5.11. We
have

c , (qq •2V = ( 5s s', t - t ), q I(&S 0 q 2 sW,,t'})

it also is true that

D( 2v f 2tc,(S' t;s', t') = cy (S -- s', t - t'). (5.18)

The above partial differential equation can be solved with respect to
c,(s,t;_s',t'). For illustration consider first the 9V - i case: according to
Proposition 5.5 above, if X(s,t) is a differentiable OS/TRF-v/[i in !1' , T
such that Dtv 1 14 1 iX(st) = Y(s, t), the Y(s, t)is space homogeneous/time
stationary. The corresponding covariances of X(s,t) and Y(s,t) are related
by D 2 v 2

.
2

1' 
2
2c(s, t;s',t') = cy(r, r), where r = s - s' and r -T t'. The

solution of this partial differential equation is

c,(s, t;s', t') = k,(r,-r) + P'v. (S, t;S', t'), (5.19)

where

) (-l)'f(VIll (r - U)
2  

I (T - V)2p I Ik, (r,)(2v+ )!(2p + 1)!
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is the corresponding GS/TC-v/ý4 and p,., (s, t; s', t') is a polynomial of de-
gree -v in s, s' and ýi in t, t'. (5.20) can be solved with respect to cy (r, -r), viz.

Cy(r,t-) = (- 1-)(V, •' 2 )D( 2
V) 

2
j 

2 1k.(r, T). (5.21)

In 9V1 x T the analysis above leads to the following proposition [61.

Proposition 5.12. Let X(s,t) be an OS/TRF-v/i. in 91U" x T. Its covariance
function can be expressed in the following form

c. (s, t-,s', t') = k, (h, T) + p (s, t; s', t'), (5.22)

where k×i(hr, ) (It = s - s' and T = t - t') is the associated GS/TC-v/p and

pv.p (s, t; s', t') is a polynomial with variable coefficients of degree -v in s s,
and degree )i in t , t'.

Proposition 5.12 together with the definition of GS/TRF--v/kt conclude
the following result.

Corollary to 5.12. If X(q) is a GS/TRF--v/li in IN" I T, then

cx(q , q2) = (c.(s_,ts',t'),qI (s,t)q2(s',t'))

(kh,T), q (s, t)qz(s', t')). (5.23)

In view of the Corollary to 5.12, condition (5.16), satisfied by all GS/TC-
"v/ýt k, (It, r), can also emerge from the fact that c, (q 1, q2) is a nonnegative-
definite bilinear in functional Q,/, which satisfies (5.23). A continuous and
symmetric function k•(h,T) in fRi" . T is a permissible GS/TC-v,/'l if and
only if

(kx(ht,}q~s,t)qs',t')) / 0, (5.24)

for all q E Q,,,. We will also say that the k,((h, r) is a conditionally
nonnegative-definite function of order -v/4i.

Let X(s, t) be a differentiable OS/TRF-v//i. By definition the

Y,,(s, t) = [DVIv i1 t (5.25)

is a zero mean space homogeneous/time stationary random field for all
G c- A, with

n

A = fa -- (_*, + ).(... ,V ...... vn,P+ 1):Lvi =,v±+ I,
i !

The spectral representation of the covariance of each Y,,(s,t) writes
cy.(h, T) = fJ fexplt(w_. _3 + A-r)1dqy. ()v,A), where q4yj(w,A), G • A
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are positive summable measures in 911 x T, without atom at the origin. We
define the covariance

cy(h,¶) = T cyo(h,-r)
aEA

= E D 1' 'P 
1)X(s, t)D f 141 )1 X(s',t'})

D [(
2

v i.
2
,2Lf2) cx^ t

aEA

if expji(w2 h + X~T)1 d4 (w)L, ), (5.26)

where ýby (w, A) = F-EA 4)y. (Aw, A) is, also, a positive summable measure 4n
T1' x T, without atom at the origin.

A function k,(h,tr) is a permissible GS/TC-'v/1 . in the sense of Defini-
tion 5.11 if and only if it admits the following spectral representation

k, (, T) [exp[i(w ii)]- P2-. +1 [i(w. _i)]] [expi(A-r)- P2,,, (iAT)]j

- J W
2
"V 4 

2A 2
. + 2

dby(iv A) + P2v,24 1 (h,T), (5.27)

where

2ý__ ,,

4 C,

and

P2,+, I '•T) = i i"(t)
C. 0

and P2,.2,(h,T) is an arbitrary polynomial of degree <_ 2v in h and 2ý
in T.

On the basis, now, of the obvious inequality

I exp[i(A .-3)] -- P2,, fi [t(w h)• ) I exp[iAT] - P2,,, 1 (i ,T)I

(V% . h( 
2
v1 

2 (ATr) 2 " 42
(2-v +- 2)! (2 p + 2)!

and, since a OS/TRF-v/ýL is also a OS/TRF -V/p' for all V > -v and P' > ýi,
it follows that

lim I -- Fh , "V ) 
(5.28)

I1--0,To -. 00 IBI2_' ' 2Tr2P 1 2 ,( .8
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which assures the existence of the integral (5.27). In view of the foregoing

considerations, if k, jh, T) c: .f• .., then k, ,h,T() + p2vh,2ýi ({, T) - .' •J too.

Clearly, the GS/TC-v/ýi satisfies the relation

•.2vi2(5.29)
v2 i .t2 a , , 2 k,(h, T) ( Iv ' "*Cy th, T). f5.29)

In relation to (5.29), the measure 0y (w,A) is the Fourier transform of

a2lL 2
(-1)"•' h_ at 2 ,-2 .k,,(-,T .'

Employing Proposition 5.9 it is not difficult to show that the representation

(5.29) is in general true for any X(s, t)not necessarily differentiable.

In the case now where (ýy (w, A) is differentiable, we can define the

generalized spectral density function of order v/ ýi K, , w, A) as the uT-fold

space/time Fourier transform of k, (1h, T). The lemma below is a immediate

consequence of the preceding spectral analysis.

Lemma 5.13. Let X(s, t) bea differentiable OS/TRF-v •. A continuous func-

tion k(h, T) in 9" , T is a permissible GS/TC-v,'v. ifand only if (5.28) holds

true and the corresponding K, (iv, A) exists (in the sense of generalized func-

tions), includes no atom at origin and is such that the xw 2, . 2 \ 2  2 K, Iw, AI
is a nonnegative measure.

Note that if the space isotropic cý (r, T), r -- !41 is space-time separabl.,

i.e., cy (r, T) :-- cY(r)cyIT), then the k, (r, T) is separable too, i.e., k, fr, T)

k, (rtk,('r). We shall examine a series of cases of this type below.

Example 5.14. Consider the stochastic partial differential equation (5.4),

where Y (s, t) is a zero mean white noise S/TRF in R' • I with covariance

cY (r,r) 6 (r, T)( 6(r)5(T), (5.30)

(5.20) gives

r2 , 1T2 t 4 1

k, (r, T)- - 1 ( )v 1 . . .. 1) (5.31)(2-v -+ I )! (2 .i + I)!

A generalization of the covariance (5.31) in .V" - I is the isotropic

GS/TC-v/ýt

V x
k,,(r,-T) = (.1T - I r_,, IT2L 1, (5.32)

where the coefficients ac should satisfy certain permissibility conditions so

that the k, (r, T) is a conditionally nonnegative-definite function in the sense
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of (5.16); see also Lemma 5.13. More precisely the coefficients a,,ý must be
such that the following condition is satisfied:

. G((2p + + + 1/2)(2p I- I (2(C. ÷- 1A!2

Ti - - - -I -- - - -___ __

- , 53.3 3

where GC.) is the gamma function, for all wV j 0 and A 0.
Based now on the observation that an OS/TRF-virLi of the form (5.1

can be assigned a CGS/TC-v 'ii of the polynomial form (5.31 1, the proof of the
following proposition is straightforward.

Proposition 5.15. Assume an OS/TRF-viLt in N' 1  1 can be e\pressed by

l'_ I_ ý[ s 11 (t X.:y tL,) d•d , I:)I.>4
X(_St) -- T T x Y (u \ dL dX, (.3..34 1

P 0c- 0

where ,), C), 1 ... , v and 0 C, 1. it are suitable coefficients and
Y(-s, t) is a zero mean white noise S/TRF in 9N1 1. Then its (;S'TC-'\ Ll is
of the form (3.32).

6. Stochastic partial differential equations

Stochastic differential equations over space-time have the general form

I X(s,t) Y(s,t(, b.1

where Xt s. t) is the unknown S/TRF, I is a given operator, and V s, t I is a

known S/TRF-also called a forcing function. Despite significant progress,
over the last decade or so, much work remains to be done in the theor\ of
stochastic partial differential equations (SPEI). A partial list of reference.', I's

given in 1291.
We saw above that, bv definition, a continuous-parameter OS,, TRF-

vi n obeys certain SPI)E and the corresponding covariances (ordinary and
generalized) satisfy the corresponding deterministic differential equations:
If X(s, t) is an OS/TRf:-v LL, by definition, all

Y' s,t) as, X(s t (It,.2)as ' 1a"

are space homogeneous/time stationary, S/TRF. Let -v - 2m 1; the field

Y~s~t), Yi(s,t) = 7IIl X(s t (6.3)
i I
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where LI = vIT.[.], is space homogeneous/time stationary, too. This
robservation leads to the following result [7].

Proposition 6.1. Let Y (s, t) be a space homogeneous/time stationary field.
Then, there is one and only one OS/TRF--v/ t X(ss, t) with representations
satisfying the differential equation

Y~~sOti 1 a"atL" - X(i ,ti,

where v 2m - 1.
An immediate consequence of Proposition 6.1 is the corollary below.

Corollary to 6.1. If Xs, t0 is an OS/TRF-vN 1p, then there exists an OS/TRF-
(v, 2k/'(i t- 2A) Z(s, t such that

,Q s'" t) Zl s, t). ( .
at-,,

The covariances associald with ý6.2) and )6.3) ,ore, respectively

a2% 21,,.

os' S~~v~ 't
and

T , k (h, T  ( .71
c~~ih~ti V-li' ''< ' ---- k TI(h

7. Discrete linear representations of spatiotemporal random fields

The key element in passing from abstract theory to a practical analysis of
spatiotemporal data is the development of suitable discrete linear representa-
tions of the S/TRF model. This is necessarv because real data are usually
discretely distributed in space-time.

l.et X(si,t t , where Is t,) - " I 1, i 1,2 .... n and i 1,2.
k, be a discrete-parameter OS/TRF. let q - Q -- Q,,,, where Q,,. is the space
of real measures on '.1" - I with finite support and such that

"1i 1,clls'tl Y __ q(s,,t,),,(s, - s,t, t)

S II I,

where ri denotes the number of time instances ti (0 1i, 2 . . Ii) used,
given that we are at the spatial position si.
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The corresponding discrete GS/TRF and CS/TRF are, respectively

X~q) K obi (S ~~'t

SqijX~si, t,), (7.2

and

T T qS,.,Xis,, t, 1. (F..;
I I I I

Definition 7.1. The discrete S/TRF Y,, is, t) of (7.3) is called a spatiotemporl

increment of order v in space and Lt in time (S/"TI-v '") onl Q,. if

for all , v and L. ,. In this case the coefficients q,, Q,, Q-.

i I , 2 .... m and i 1,, 2.. pi will be termed admissible coefticents

ot order V Ll (AU-Nv k).

Definition 7.2. The discrete OS/iTRF Xs, t) will be called a OS/,TRF- v Ll

on Q,. , if the corresponding S/TI-v ki Yq s, t ( is a zero mean space homo-
geneous/time stationary RE.

A summary of continuous S/TRF-related notions and their discrete
analogues are given in Figure 7. 1.

Example 7.3. Consider the case illustrated in Figure 7.2, where (s, t I N I
and s (s15s-. Let

y, 1

X(s1  Ass2,t At) 2X(sI , As,s 2 ,t1 ) X(s 1 * As,s 2 ,i At)

,X(,; # As,s 2.,t 4 At) 2X(s1,s2 A As,t) 4 X(si,s 2  -4 As, t - At)

•X(s, As,s 2 ,t ý At) 2X(si --As,s,,t) i X~si - As, s 2 ,t At)

iX(sj,s2- As,t 4 At) - 2X(sl,s2 -As,t)-A X(si,s 2 -As,t At)

-4[Xlsi,s 2 ,t At) 2X(s,s 2 ,t) + X(si,s 2 ,t - At)!. (7.5)
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THEORY PRACTICE

Y,(s ., ) =X (s ,., q) Y, (5..1) X x(S,., q)

.1l pI,( (q(.•a'),S0. X q, X(&

ýs= V

m (q)= (. s ac) (g,( )(, t ,)). m .(q) • q. bm~ g(,;.si .l p 1 'tj-

(k 5-J - a)q(s.t)q(j'. t') Žo 0 q., q,.,. k(I - t) - 0

qeQ.,, {q,} AC-v/

Figure 7.1: S/TRF-related notions and their discrete analogues.

It is easily shown that

9 •

s 2 ti = 0
i lj 1

forall p1 + P2 < I and d, • 1. Therefore, theY, (sl,s.,t)aboveisaS/Tl-1/1

Proposition 7.4. Let X(s, t) be an OS/TRF on Q, ., and let

X(so,to) Y- YL j AiiX(s,,t,) (7.6)
i Ij 1,

be the linear estimator of X(s, t) at point/instant so, to) such that

F [X(s,> to)1] - X(so, to)] = 0 (7.7)

and

FIX(-so,tol = - " (7.8)
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Figure 7.2: The (s, t) :~ N, I case.

where q, are suitable coefficients. Then the difference

where No I and Aip-No 0 Gi, j 0), is an S/Tl-vjj, onQ,

Proof. See 161. 1

In the discrete framework, a function k, (h, T) in 9Vl l Tis a generalized
spatiotemporal co variance of order v in space and p. in time (GS/TC--v/ls if
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and only if for all AC--v/Vt {qjj}

E[X(q)]
2 ==E[Y,(0,0)]

2

= [ qtliX (s o t )l

= in Pt i m i,

= YI Z- T T
i-I i 1 I V' 1 j' ,-

0 0, (7.10)

where hj,, = s -sand rii, = ti - ti,.

8. Optimal estimation of spatiotemporal random fields

8.1. General considerations

In this section, we will deal with the spatiotemporal estimation problem,
which has various applications in almost any scientific discipline.

In general, the spatiotemporal estimation problem can be summarized
as follows:

Problem 8.1. Let X(q) be a GRS-v/ia, and let S1, ,p be the Hilbert space
generated by the representations X(s, t) of X(q) (the X(s, t) may represent,
for instance, the precipitation, the atmospheric pollution or a meteorologic
element at position s at time t). Let X(sk, t,,) e If, .. We want to find

estimates Xýs, t,•) of the actual values X(_sk, t,,) of the natural process of
interest at unknown positions sk and time instances t(,. The calculations are
to be made on the basis of experimental data (observations) X(,i, t1 ), i = 1, 2,
... m and j -l I , 2j, ..... p1 . More precisely, an estimate X(sk, t,,) is defined

as an element of X,, . which fulfills the following requirements:

1) Lin'aritil, viz.

X (sj" t") = 1X , (8.1)

where_ =li-&il (i = ,2, .,t; j1= 12.l . pP)isavectorof real

coefficients 1ij to be calculated during the estimation process, and XT =

(X(si, t, ((is a vector of known elements X(s 1 , ti) E (si, ti) E A,
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* s - t to be estimated.

o s - t where data are available.

Space s
It

(s,,t) = ij X.(s. tj). (LINEAR)
i lj-1 i

SPACE TIME INSTANCES
S t j
1 1 .3 .4 , 6 I V, 2 1 .3 1, 4 1 4

2 2,4,5 12,22.32 3

3 1.5,6 13,23,33 3

4 1,2,3,4,5,6 14, 24,.34, 44. 54.6, 6

5 2,5 15 .25 2

Figure 8.1: The 9M1 x T case of linear space-time estimation.

where A is a compact set of data points/time instances. (Figure 8.1
illustrates the 91 x T case of such a linear estimator.)

2) Unbiasedness, i.e.,

ErZ(sk, t', fl = 0,, (8.2)

w here Z (sk jt,) = ý((Sk lt o ) - X (_Sk t c;)

3) Optirnality (minimum mean square error), i.e., it must minimize the
estimation error

O•' (k, tq) = E[Z(s, tq )12 . (8.3)
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K = [k

This is a constrained optimization problem in 91" x T whose solution

dependb upon the regularity properties of the random field X(S, L) over

space-time.

8.2. Optimal estimation of space nonhomogeneous/time
nonstationary processes

Suppose now that the natural process can be represented by a S/TRF-v/4a
X(s, t). On the basis of Proposition 7.4, the Z(s.k,t,) - X(sk, t() - X(s, tq)

is a S/Tl-v/pt, and its variance is given by

i 1) 1 l 1 i tin J"

2L L iikx(hki, Tqr) kxk(O, 0), (8.4)

UK, = -1 and Li, = /.kj = 0(1 # k, i # q)). The fact that Z(sk, t,,) is a
S/TI-vi't implies that

If"l I'
•iiS•ti =•S• q(8.5)

i li 1

for all 0 <, Ip <1 -v and 0 <_ . • p. (Note that (8.5) is, also, the unbiasedness
condition (8.2)). The minimization of (8.4) with respect to Ljj's subject to
the constraint (8.5) yields the system of equations

K. " _ (8.6)

_ti;si,,ti,), Sý-t' ii' = 1, 2 ... mn; i = ... i' =...

p1 '; )) •< v, C < p) is a matrix of GS/TC-v/;p and space-time polynomials;

_- =(L~j,c, i = 1, 2 ..... m; i = I . .. ; p = 1p - v; c is a
vector of coefficients Lij which includes the Lagrange multipliers iDc; and

the vectoro' = [k,(Sktq;_0tj), Skt~q, 1,2 ... , m; i = li, pi,10 v,

9. Simulation in space-time

Several of the spatial simulation approaches can be extended in order to
produce realizations of spatiotemporal random fields (S/TRF).

By means of the ST simulation concept (5,81 the space nt-dimensional x
time random field X,(s,t), where (s,t) E 9V1 x T, can be simulated by
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summing contributions from several random processes X _e (s{ , t), where
s = s.- 0, (si, t) c 91 x T; viz.

Nxn{_S, t) = v-- I'_. , (si, t}. 9.1)

in which N is the number of simulation lines.
On-line realizations of the S/TRF X1 eo (si, t) can be generated in terms

of its spectral density function

C 1,e_({V,,A) = W1 jCn (w,X)I, (9.2)

where iv = wuQ, by using the simulation formula
in K

X I (S t) =L >j 2C1 (wk)AwAAk

cos(w{s - 27Akt ( l.K, (9.3)

where the phase angles 0j~k are distributed randomly but uniformly within
[0, 27I].

Spatiotemporal simulation is a valuable tool in the context of random
moving surfaces studies, such as sea waves and their action on structures,
atmospheric pollutants and meteorological elements. Also, the simulation
method may be used to develop a spatiotemporal model for rainfall genera-
tion. Space-time rainfall simulations can be used in evaluating strategies for
satellite remote sensing of rainfall and for studying storm runoff problems.
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SWe discuss the reconstruction of bandlimited functions for randomly sam-
pled valuesand give an algorithm that works provided the sampling density
is above the Nyquist rate.

Let f be of finite energy and bandlimited with bandwidth 2w, i.e.,
f E L2(R), suppf C [-w, w], and let ... < xi ý < xi < xj Ij < ... be a
random sampling set, such that its density 6 := sup,(xi4 , xi ) < 7t/w,
i.e., arbitrarily close to the Nyquist rate. If f, is the result of the algorithm
after n iterations, then the rate of convergence of f,. to the original function
f is 11f- -fl < (6w/ln)" '(7T + 6w)(r- 6w)- f 1 j. This allows for
good estimates of the number of iterations required to achieve a certain
reconstruction accuracy.

In contrast to recent reconstruction methods: (1) an explicit and opti-
mal estimate for the sampling density required for the convergence of the
algorithm is derived, and (2) the algorithm functions independently of the
sampling geometry-as long as the sampling density is higher than the
Nyquist rate.

1. Introduction

In many applications the problem arises of whether a bandlimited function f
is uniquely determined by its nonuniformly sampled values f(x, ) and how
it can be reconstructed from these samples.

In this article we discuss and compare various quantitative results on
nonuniform sampling. At the 1989 ASI we outlined a new approach to
nonuniform sampling which contains a new generation of iterative recon-
struction algorithms [10]. In theory, these algorithms have all properties
that are required for a good reconstruction algorithm: they are stable, con-
verge for a large class of norms, possess good localization properties and

f The author acknowledges partial support by grant AFOSR-90-031 1.
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work in any dimension [7, 6, 5]. However, for the algorithm to work, the
sampling set was required to be "sufficiently dense." Thus it was not at
all clear whether the algorithms would converge for realistic sampling sets
close to the Nyquist density, and it was unknown how they would perform
in practice.

Since then the numerical implementation and comparison with other
methods has produced very convincing results in favor of this new class of
reconstruction algorithms [2, 9].

The objective of this article is to provide some sharp estimates which
explain the success of the new method. In Section 4 it is shown that for the
version of the algorithm that has been implemented, the required sampling
density is arbitrarily close to the Nyquist rate. Explicit estimates are given
for the rate of convergence of the iterative algorithm. It is then compared
with other methods that have been proposed for the complete reconstruction
of bandlimited functions.

Let L2 (91) denote the Hilbert space of square-integrable functions on N'3
with norm 11fI = (f__% If(x)t 2 dx)' 2. For w > 0,

B2 = {f E L2 (91) :suppf C [-w,ww]

denotes the closed subspace of square-integrable bandlimited func-
tions with bandwidth w. Here the Fourier transform is defined by
f(L) = J'f f(x)e- "L dx. XA(x) is the characteristic function of a set A.

B2, is a Hilbert space with reproducing kernel L, sinc w(x) = sin W(x --
y)/w( x - y), where sinc x - sin xix and L, f(x) = f(x - y) denotes the shift
operator. In other words,

f(4 = fi f (x) sinc (v(x - y)dx. 11

B,2, has the orthonormal basis [sinc a(x - 7Try/w), n E Z,•. A combination of
both facts yields the cardinal series for f e B 2

f(x) = f(7ri/w) sinc a(x -- 7tfl/W)

The sampling rate (71/cV)-I is the so-called Nyquist density. It is
the lowest density at which complete reconstruction is possible in a stable
way [16].

Since L, sinc wx is the reproducing kernel, the reconstruction of f from
f(x, ) = f f(x) sinc w(vx - xn ) dx is a version of the moment problem. State-
ments about sampling are therefore equivalent to statement about spanning
properties of the sequence L,,, sinc tux. Thus conditions when a sequence
Lu,, sinc cx, rt E Z, or equivalently eix- LXI k Ii) = (L,,, sinc wxýfL_, con-
stitutes (1) a Riesz basis, or (2) a frame, or (3) a weighted frame for B1,20
(L2 (r--w, wl) respectively) lead naturally to sampling theorems.
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Sections 2 through 4 explain the reconstruction methods related to
these possibilities and discuss their advantages and disadvantages in the
numerical treatment of nonuniform sampling. Section 5 contains the proof of
Theorem 4.1, which is the most recent and currently most efficient algorithm.

2. Kadec's 1!4-Theorem

The first sampling theorem is implicit in the work of Paley and Wiener [201
on nonharmonic Fourier series and deals with the question when a sequence
ei"xL forms a bas;c for L2 (-_W, cv). The sharp constant 1/4 is due to Kadec
1151. For statement. in the engineering literature see [1, 13, 19, 23].

Recall that a sequence e,,n E Z is called a Riesz basis of a Hilbert
space X'K, if it is the image of an orthonormal basis of ýY{ under a bounded,
invertible, linear operator.

Theorem 2.1. If x,, rt E N is a nonuniform sampling set for which

S L < .- n c Z 12.1)

then there exists a sequence 1,, in Ba,, such that for every f c B2

f(x) f(x,,)g,,(x) (2.2)

where the series converges in the L2-norm. The collection sinc co(x -- X • i

Z is an Riesz basis for B2, with biorthogonal system g,,.

2.1. Advantages

"* The required sampling rate is exactly the Nyquist rate.
" Since the proof of this theorem is based on the inversion of a linear oper-

ator by a Neumann series [24], the reconstruction of f from the samples
f(x,,) could be formulated as an iterative algorithm, see Section 3 and
Section 4.

"* The functions ýg,, of the biorthogonal basis are known explicitly
in terms of Lagrange interpolation functions 1171. Let 9(x) =
(x-xol r- 1(1-x/x,•(I-x/x.,•), then g,,(x) g(xb/((x-.1,, g'(x,'l1.

"* Both collections sinc Lv(x - x,), n E Z and g,,, n E Z are linearly inde-
pendent. This fact has two important consequences:

1) The coefficients ci in the expansion f = , c,,g, are uniquely
determined, namely c, = f(x,, 1.

2) Interpolation: For every sequence A, c t2 there is a f c- B2,, such
that f(x,,) = A,, specifically f = 911.
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2.2. Disadvantages

- The sampling sets x,,, n E Z are restricted to jittered versions of regular

sampling.
* Although "explicitly" known, the g,'s are too complicated for use in

numerical work.
* The sinc w(x - xJ,n E Z are linearly independent. This implies that

a function cannot be reconstructed completely if even only one sample
is missed.

* Instability: If only one sampling location is changed, then all gn's

change drastically [21].

The applicability of Kadec's theorem in numerical work seems to be limited.

3. Duffin-Schaeffer's theorem on frames

The requirement that translates of sinc form a basis for B2 is too strong to

allow random sampling. A more realistic approach to sampling demands:

" the signal is uniquely determined by the samples, in other words,
L,,, sinc wx spans B2 , and

"* the sampling is stable.

Both requirements can be expressed by

11fil -< C (~ T f(X"JI)1I2 (3.1)
\nE•,

The underlying abstract concepts were introduced in the fundamental
paper by Duffin and Schaeffer [3]. For an exposition of this and related
material in the context of nonharmonic Fourier series see also the monograph

of R. Young [24].
A sequence e., nt E Z in a (separable) Hilbert space 9( is called a frane

for If, if there are two constants A, B > 0, such that for all f (

A] f(]j2 <T 'I(e,,f)1 2 <, BIjfIL (3.2)
n

The constants A and B are called the frame bounds. From (3.2) follows that

f is uniquely determined by the frame coefficients (ce, f). It is remarkable
that the equivalence of norms (3.2) implies a simple iterative reconstruction

method. Define the frame operator S by

Sf = -(en,f)e, (3.3)
1TIEZ
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then by (3.2) S is bounded below and above and consequently S is invertibl-
on -W. Setting o( = 2/(A A- B), f can be reconstructed recursively by

u = oaSf (P, f I -(,, -- 0S607 f = ( (T  (3.4)
U 0

If f, = 7. (Pr. is the result after n. iterations, then

";f- f 1:, - A - 1 ,, 13.5f
(B +A) A '

and f, converges to f at a geometric rate. a is called the relaxation parameter.
The precise value of o( in (3.4) is not crucial, the algorithm converges for all
values of•a between 0 and 2/'ýS]). The choice a = 2,/(A + B) yields the fatest
convergence and the best numerical results.

In [3], Duffin and Schaeffer give conditions under which the sequence
L,., sinc wx is a frame for B2,,. For a converse see [14]. Most algorithms that
were considered in engineering are reformulations or slight modifications of
the frame n othod [19, 18, 22, 231.

Theorem 3.1. If for some constants oa, D and ) < 1 the sampling set x,,, 71
satisfies 1%, -- x,., a -- 0 or m ;% n and

x, - Y D, r , .

then sequence L ,, sinc (ox is a frame for B1,,. There exist A, 13 0 ý,Lch that
for all f B 2

A f ' f rvKl B f t '.7

Consequently t 1 3 cain be reconstructed by the algorithm 13.4 , with the
frame operator

Sf(x f (x,, Isinc (o,(x x,) (3.81

3.1. Advantages

"* The sampling rate in (3.61, i.e., the average number of samples in
an interval of length 1, is (Y7 'a)-• and thus arbitrarily close to the
Nyquist rate.

"* The sampling set may be fairly irregular and may have gaps of a fixed
maximal length D, provided that they are compensated by more sam-
pies between the gaps.
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The sequence L,,, sinc wx is overcomplete in B2, and linearly depen-
dent. The practical consequence of the overcompleteness cannot be
overestimated. It means that even if a finite number of samples is
missed, the signal f can still be completely recovered (possibly at a
slower rate of convergence of the algorithm). It is this property which
makes "inexact" frames so useful and often preferable to orthogonal or
Riesz bases.

3.2. Disadvantages

x Since the proof in [3] uses heavy complex analysis, explicit numerical
estimates for the frame bounds A and B are hard to come by. Therefore
a suitable relaxation parameter has to be determined by experiment.
Thus estimate (3.5) is not as useful as it looks at first glance.

- The sampling set is still just a perturbation of the regular sampling set
Ytfi/w, n : Z. The average number of samples in an interval of length

1 is (ynjw) -1. This excludes sampling sets with local variations of tile
density and thus many situations of practical interest. For instance,
in sections of high interest one might want to sample at 10-fold the
Nyquist rate, in sections of less interest just above the Nyquist rate. Of
course, in order to satisfy 03.6), the excess samples could be dropped.
But in most applications it seems quite unreasonable to throw away
substantial information just to make the algorithm converge. Rather,

one would look for a better algorithm.
let us also mention that from numerical experiments it is known

that when gaps alternate with bunches of samples in accordance with

(3.6), then the algorithm converges rather slowly.
@ Since the functions sequence I ,, sinc wx are linearly dependent, the

interpolation problem f(x,, A, does not have a solution t. -13:, tor

all sequences A,, e 12.

4. A new algorithm and weighted frames

This section explains a new algorithm which overcomes most of the difficul-
ties of the methods in Section 2 and Section 3. This algorithm emerges as a
simplified version of a new generation of reconstruction algorithms which
were explored in 14, 7, 6. 8, 51. The material on the quantitative theory with
sharp estimates is taken from [11].

Let the sampling set x,, n - Z, be arranged in increasing order, ... .
x,-, x,, x,,,1  < .... Denote the midpoints by ig, (x,, , - x,, )2
and set X11 Xw•,, ,y,,i. Then y,, - x,, < 6/2, x, ,,- k -/2 and

- ,Xx) -- I for all x. P denotes the orthogonal projection from I M(,•)

onto 1320 and is defined by (Pft I - w X, a.e.
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Theorem 4.1.

Reconstruction: If

6 = sup(x, - x, <) < :/w, f4.1)

then every f E B2 can be completely reconstructed from the sam-
pling values f(x,, ) by the following algorithm:

4ýc = P(Yf(Xfl)XTI) (4.2)

cd k I k ~ - (P Pk (Xi (Xn) (4.3)

and

f= (l (4.41
k 0

where all sums converge in L'
Rate of convergence: Let f,, = o 0 . be the resulting approxima-

tion of f after n. iterations of (4.3). Then

Of ( f _1 71 ± l6w-5
\71) 7t--6

From the estimates in the proof, we obtain the following important
corollary on the stability of the algorithm and an alternate reconstruc-
tion method.

Corollary to 4.1. If "T, denotes the weights w, J Xr(x) dx . i -y

then
I - l 7 L 7f(x~ll

21. (i I t f (4.61

it-zc

In other words, the sequence

w sinc tw(x x,,) T1

is a (weighted) frame for B2, with the explicit frame bounds A = (-
6wI!t)

2 and B = (I + 6w/iT) 2 . According to (3.4), this yields the following
reconstruction of f. Let

ISwf)(x) = + 7-- - f~x, )w1, sinc wtx - x,,) (4.7)

nEZ.
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be the weighted frame operator, then

(PC = S ,f (Pkf1 =(4k - S,,k f= (bk (4.8)

,2•

Since 2/(A + B) = (1 + ". )- ,-y (B -A)/lB + A) 265w/(LrT 6 2 2 L'7),

and B/A = (7 + 6(L,) 2 /7t - &w)2 , the rate of convergence of f,, - Ok
to f is as in (4.5)

~f- f ! -< 3T 1 (71 + 6 wLL) I

The proofs of Theorem 4.1 and its corollary are given in the final section.
Besides the general advantages and disadvantages of the frame method

which were discussed in the previous section, we would like to emphasize
the following peculiarities of the new method.

4.1. Advantages

" The algorithm converges whenever the largest gap between the sam-
pies is smaller than the Nyquist distance -,cw.

"* Since no other conditions are imposed, the sampling set may bý Irulv
random; in particular, the algorithm handles local variations of the
density quite well. Because of the use of the weights w,, the sequence
\ ',, L_ •. sinc wLx is a frame in many situations, where Theorem 3.1 does
not apply; for instance, when there is no positive minimal distance
between the sampling points.

"* The proof is much simpler than for the theorems of Kadec and Duffin-
Schaeffer. All constants are explicit in terms of the maximal gap length
and the size of the spectrum. The explicit calculation of the frame
bounds and of the rate of convergence allows the number of iterations
that are necessary to achieve a given accuracy to be determined a priori.
For instance, in order to obtain an accuracy of 0.1*4 on a CD-player with
4-fold oversampling (btu,/'71 1/4), only five iterations are necessary.

* snce after the removal of a finite number of points the sampling set
still satisfies either (4.11 or (3.6), the algorithm provides a complete
reconstruction of the signal even when a finite number of samples are
m1issing or lost.

4.2. Disadvantages

Condition (4.11 is stronger than (3.6) and does not allow any gaps in the sam-
piing set. If gaps do occur, the frame algorithm is still applicable, however
at the cost of a slower rate of convergence.
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Remark 4.2. The algorithms of Section 3 and Section 4 have been imple-
mented and tested intensively by H.G. Feichtinger and his collaborators at
the University of Vienna [2, 9]. From these experiments, it became clear
that the best currently available reconstruction algorithm is (4.7) and (4.8),
the "adaptive weights method." Since it is much easier to implement than
the recursion of Theorem 4.1, it requires less time for the same number of
iterations.

The performance of the ordinary frame method gets worse with in-
creasing randomness of the sampling set.

Remark 4.3. A detailed error analysis that applies for an large class of
reconstruction algorithms will appear in [5].

Remark 4.4. Theorem 4.1 has several interesting variations: complete re-
construction from local averages, random sampling with derivatives, and
higher convergence rate through smoother approximation operators. We
refer to [11] for detailed statements.

5. Proof of Theorem 4.1 and its corollary

For the proof of Theorem 4.1 we need the following well-known inequalities.

Lemma 5.1 (Wirtinger's inequality). If f, f' E L2(a, b) and either f(a) = 0
or f(b) = 0, then

If(x)12 dx < 4(b - a) 2 If f'(x)12 dx (5.1)

The lemma follows from [12, p. 1841, by a change of variables. We use
Wirtinger's inequality in the following form: If f(c) = 0 for a < c < b, then

E If(x)12 dx < -; max ((c - a) 2 , (b - c) 2 ) E if'(x)12 dx (5.2)

which follows immediately from writing b J - f, + f'b and applying (5.1) to
each term.
Lemma 5.2 (Bernstein's inequality). If f E B2, then f' E B2, and

llf'l <_ (vlfHl (5.3)

Proof (of Theorem 4.1). Define

Af = P (Y f(x.)xt/ (54)
nEZ
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It is easily seen that A is a bounded linear operator from Bw into B2

(see also (5.7) below). The iteration step (4.3) requires an estimate on JIf-AfJJ

for f E B2e. By writing f E B2, as f = Pf = P (- fx,) one obtains

2

(nEZ.
Y •(f -- f(x× ))Xn2

2

=x f(x-fxn))Xn dx (5.5)

Since the x,'S are characteristic functions and have mutually disjoint sup-

port, the last expression equals

If(x) - f(xn 2Xn(X) dx If(x) - f(x,,)I2 dx (5.6)
fl , ,y " I

Next one applies Wirtinger's inequality (5.21 to each term:

S f(X) _ f(Xn )12 dx

4
maX((x) I - f'(X)12 dx

71• I

62 fu,, ( )1

"ý12 , If'(x) 2 dx

since y9 -,, , 7 6/2 and x, -- i, I <_ 61/2.

Summing over n and using Bernstein's inequality, one obtains

2 ,62 62 2
If-- Af212 < ý -,F ,f'(x)i2 dx = 71HfII2 <1 -• 7 (-(fl(2

Thus we have obtained the basic estimate

lif - AfJ) <_ 6 (L- IIf! for all f 5 B2, (5.7)

This means that for bw/r7T < I the operator A is invertible on B2, with the

inverse

A-= (ld -- A)" (5.8)

n 0
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and
fA-'Af -E(Id - A)'•Af (5.9)

n=O

Setting 4'o = Af and

= (Id - A)"Af = (ld - A)(ld - A)"-'Af

= 4k-i - A(n.-1  (5.10)

yields the algorithm (4.2)-(4.4). Since the start of the iteration is 4P0, the
reconstruction indeed contains only the information on the samples f(xn).

For the error estimate (4.5) we observe that with (4.4), (5.9) and (5.10)

f-fn = k = (ld-A)kAf (5.11)
k n+I k ntI

From (5.7) one deduces
k

[j(Id - A)kAfj H w k JIM 11f2 (5.12)
and

f ifl ± A-f ll <- [ I + NO )lfl2 (5.13)

Combining these estimates yields
~k

k (V i +

bw), Iofi (5.14)7[-

II

Proof (of Corollary to 4.1). The upper frame bound B 1 -Lw/7T in (4.6)
follows from (5.13).

For the lower bound A = 1 - 6cv/7, we observe that by (5.8) and
(5.7) A- 1 has the operator norm IIA-111 <- (1 - 6u/n)-1 . The equality
II Y'EZ, f(x, )x-n V = ~F,' [f(x, )I2vv follows from a simple computation
similar to (5.6). Altogether we obtain

llf~l [ IIA-'Afll < IIA- 1 1[ [[Pl 11 L f(Xn)XnlI

nnEE,

and everything is proved. I
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SWe study the a.s. convergence in the irregular sampling theorem. For
bandlimited processes, we obtain necessary and sufficient conditions for
exact recovery of almost all sample paths of the signal. No stationarity
assumption is needed, but a spectral representation is.

1. Introduction

The sampling theorem, variously attributed in the regular case to Ko-
tel'nikov, Shannon and Whittacker, has been the subject of numerous
studies with both theoretical and applied flavors. This is reflected in the
extensive bibliography available in the comprehensive works of Jerri [7] and
Higgins [3]. However, as far as path reconstruction of stochastic processes
is concerned, rather few results are available. Under the assumption of a
stochastic model, the usual approach in the literature is to obtain, say, mean
square reconstruction which follows quite directly from the deterministic
sampling results. When a path of a process is observed and sampled,
reconstruction "on average," i.e., in mean square, might be inadequate and
path reconstruction has to be considered.

Only a few papers are concerned with reconstructing the paths of a
process. Firstly, Belayev [11 obtained exact reconstruction via the cardinal
series for stationary processes under a guard band assumption, i.e., the
process is bandlimited to (-7, 7T) while the sampling rate is greater than I /n.
Secondly Piranashvili [10], still under a guard band assumption, extended
Belayev's result to include some classes of nonstationary processes. Thirdly,
Gaposhkin [2] gave, as a consequence to a general theorem on the almost
sure convergence of stochastic integrals, a necessary and sufficient condition
for path reconstruction of stationary processes bandlimited to (-7T, rT), the

t Research supported by ONR Contracts No. N(XX)14-91-J-1003 and N0()014-89-C-0310.
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sampling rate being 1/7. Gaposhkin's result is also limited to uniform
sampling points and so the recovery is achieved via the cardinal series.

In the work presented below, both the assumptions on the stationarity
of the process and the regularity of the samples are relaxed, and no mo-
ment condition is needed. A criterion is provided for the path recovery
of some classes of nonstationary bandlimited processes using irregularly
spaced samples.

2. Preparation

Let (0,lB, P) be a probability space. For 0 _< cx _< 2, let L (0,B, T)(L (9T)
for short) be the corresponding space of complex-valued random variables
equipped for 0 < ax . 2 with the (quasi-)norms .)1 while on L' VP), the
topology is the one induced by convergence in probability. The main class
of processes considered here have a spectral representation, namely, Xt
f N e1 'l dZ(N), t E 91, where the random measure, Z : B(9M) -4 L'(TP), 0
cx _ 2 is a-additive. Using the terminology of [4, 5] (where the reader
can find more details, examples, references) these processes are (bounded
continuous) (a,oo)-bounded. Essential to our approach is the following
result (again see (4, 51).

Lemma 2.1. L.et X = {Xt t tjl, Xt c La (0, B, T), be (ox, 0-bounded, 0
a _< 2, with random measure Zx. Then, there exists a probability space
(D,1B,) with I 2 (T) - 2 (Y), a stationary process Y . Yj q L2(T)
and a random variable A - L2

, 2-,(T) such that Xt APYt, t ! .M, where
P is the orthogonal projection from [ 2 (T) to L2 (P).

In Lemma 2.1 Zy, the random measure of Y, is orthogonally scattered;

hence there exists a finite positive measure F such that

2 p 2

,.f dPZY • IPI 2 t J fdZYl = !P1112 J if 2 dF

for all f 4 1_
2 (F).

Now that the probability material has been given let us state another
lemma which is a particular case of a beautiful and important result of
Levinson [8, IV].

Lemma 2.2. Let {tk}kE-z be a sequence of reals such that supK Itk - kJ < 1/4.
Then the set {ei1 kkEZ. is complete in L2(-7T,7) and there exists a unique
biorthogonal set fhk~kEZ C L2 (-7r,7T) such that, for any g f- L2(_7,7),
the ordinary Fourier series _ eit;kg(k) and the nonharmonic Fourier



339 Some recent results on the sampling theorem }

series F" eit _•f hk(x)g(x) dx are uniformly equiconvergent on every
compact subset of (-7r, 7r). The hk are given by:

"~ G(t)
_'k(t) F " G'(tk)(t - tk)

where

G (t)={(t -to) 1- 1- t tC91.

As mentioned above, Lemma 2.2 is a particular case (for L2 (-_t, 7t))

of convergence results for non-harmonic Fourier series, which have their
origins in Paley-Wiener [9]. The bound 1/4 is tight and is a sufficient condi-
tion for {eiAt }kE Z to form a bounded unconditional basis of L2 (-7T, 7T). The
functions Yk are called Lagrangia interpolating functions since

Wk(tT) ,O, fork rn

[1, for k = n.

When tk = k, G(t) = sin 7rt/iT but, in general, no closed form expression is
available for G.

3. Reconstruction

Throughout the next two sections, by a process X = NXtEN we mean
that X is (bounded continuous) (c•,oo)-bounded, 0 <_ cx <_ 2, i.e., X(t) =

fX eiA dZ(A), t E 9M. Furthermore, X is said to be bandlimited to (-7T,7T)
(the bounds ±7T are just chosen for notational convenience) if Z = 0 a.s. T,
outside of (-, 7T).

Theorem 3.1. Let X be bandlimited to (-7t + e,i - c), let ýtkrkEt c 9q with
supk Itk - kJ < 1/8, and let G(t) = (t - t(,) HI 1(1 - -)(1 - t ). Then,

X(t) +00 X(t,)G(t)
X "-) G'ftj(t-tk), a.s. T, uniformly on every compact subset of M.

When the dominating measure F in Lemma 2.1 has some degree of
smoothness, reconstruction is also always possible.

Theorem 3.2. Let X be second order stationary, bandlimited to (-71t,7). If
for some 0 < 6 < 2,

J'1A±,rI<6 (loglog 712 - )2 dF <

Then,

•oo X(tk)G(t) ,

00G'(tk)(t - tk) as:P
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Although reconstruction in LI (TP) is always possible, the next result
shows that when the paths are concerned, things can go very wrong.

We also note that the result below provides a bandlimited stationary
process for which

SX(tk)G(t)
lir Csup , G(tk)(t - tk) a.s

This is in sharp contrast to Theorem 3.1.

Theorem 3.3. Let } be a nondecreasing sequence of positive reals
such that

1) an = o(log log TI),
2) there exists C1 > 0 such that 2- C, C 12,,, TL large enough.

Let ýtkj be any sampling sequence. Then, there exists a probability
space (f•1.BT ,) and a bandlimited stationary process X defined on this
space such that with probability one (TI ),

limsup II - X(tk)G(t) = +-oo.

This work is still in progress. Extensions of these results, including the
case of more general sampling sequences, will be published in [6].
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SWe discuss the problem of estimating the spectral density function of
a continuous 2-dimensional stationary random field when the data set is
obtained from a point process on the plane. Second order spectral analysis
of irregularly spaced data on a real line was first considered by Shapiro
and Silverman [201. General results of stationary interval functions were
studied by Brillinger [51. He established consistency results for general
polyspectral estimates of the stationary interval functions. Consistencv
results and alias-free sampling schemes for the second-order case in the
estimation of the spectral density function of a continuous time serieS were
obtained by Masry [12, 11, 141. We generalize these results to the estimation
of spectral density functions on higher dimensions. Special attention is
directed to the 2-dimensional case although general k-dimensional cases are
considered also. Asymptotic bias and covariances are stud ied. In particular,
it is shown explicitly how the information of the sampling process come into
play in obtaining a consistent estimate of the density function of a continuious
random field. Estimates under Poisson's sampling scheme are studied in
detail. A few simulation examples are given as illustrations.

1. Introduction

Statistical analysis of the stationary spatial series has been given considerable
attention in recent years with applications in many areas (see [81 and [191).
General discussions of spectral analysis of spatial series have been given by
Brillinger [4] and Whittle [221. This research is based on the data which is

"t This research is supported by CNR contract NO(X)14-85-k-04b8 and USDA contrac't I'SW-

91-(XX)3CA.
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sampled at equally spaced grid. In most applications, observation stations
are often irregularly spaced. Masry [15, 16] introduced random acoustic
arrays placed by an independent sampling from a given multidimensional
probability density function to estimate the frequency-wave number spec-
trum of the ambient noise field. Inference of the spectral density function
of a 2-dimensional point process is of interest also [2, 9]. This paper is con-
cerned with the estimation of the spectral density function of a continuous
2-dimensional stationary random field which is sampled by an independent
2-dimensional point process.

Spectral analysis of irregularly spaced data on a real line was first con-
sidered by Shapiro and Silverman [20]. Brillinger [51 studied the general
results of stationary interval function. Consistency results and alias-free
sampling schemes for estimating the spectral density function of a contin-
uous time series were obtained by Masry [11, 14, 15]. Masry [131 provided
an alternative way to estimate the spectral density function by using an or-
thogonal series method. These results are based on the 1-dimensional case.
We generalize these resuits to the estimation of spectral density functions on
higher dimensions. Our purpose is to find the spectral density function of
a stationary spatial process Y = ýY(t), t i RP 1. Special attention is directed
to the 2-dimensional case. The results obtained will be applicable to the
analysis of data recorded at points in some region of a surface. This kind of
data can be found in optics, forestry and geology.

Let Y :Y(t), t : RP' be a stationary, zero-mean spatial pro-
cess with finite fourth-order moments, continuous covariance function
RI (t), t R", spectral density function (th (A I, N - RP and kt"-order cumu-
lants QY" (u.l .... uk-l1, ..... -.R1 'k - 2 .. , where R" denotes
real Euclidean p-space. The point process T . , E R' is stationary

and orderly, independent of Y, with finite fourth order moments. If N() is
the counting process associated with [Tk. , then

"* For any positive integer k and any collection 'B. B.. 1 B of subsets
in R', with 13i -(x ........ u : a, ,- x, • bo, ui,bl, . R, for
i I_ ... p, the joint distribution of the random variables N(B, -
h) .. N(Bk h1i is independent of hi ,R"

"* P[N(IBJI "- 21 o(!B]) as B3110.

"* F[N" (B)I- oo, for all bounded B.

The results are true for Bi • BB" where 'B" is the Borel sets in RP. From now
on we will concentrate on p1 2 (i.e., in the 2-dimensional case). Let 0 be the
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mean intensity of the point process N (.). Then

E(N(dt)1 = O3dt (I.)

cov[N (dt), N(du) , = CN (du)dt (1.2)

where E denotes expectation and N (dt) denotes the number of points in the
region (t×,t, + dti x (t,,t, + dt,1. CN is called the reduced covariance
measure; CN has an atom at the origin, CN (UO I = (3. The "sampled" process
is taken to be

Z(B) = Y- Y(-ri) B ý B2
"qjEB

or in differential form

Z(dt) = Y(t(N(dt).

An estimate of the spectral density function of the random field Y Wt) is
proposed when the observed process Z(dt) and the sampling process N (dt)
are observed.

If NH ( is a 2-dimensional Poisson process with events randomly oc-
curring in the plane, then the number of events occurs in any region of area
A has the Poisson distribution, with mean I3W' and the events in the non-
overlapping area are independent. The probability densitv function of N (A)
is given by

C 11Arj~
P(N(A) = n) .. . . .... n = 0, 1,2....

n.

In section 2, second order cumulants and the spectrum of a continuous 2-
dimensional random processes Y(t) are introduced. Its relation with the
sampled process and the sampling point process is derived. Consistent
estimates of 2nd-order spectrum ',f Y(t) are proposed in Section 3 based on
the 2-dimensional Poisson sampling scheme. A simple simulation example
is presented in Section 4.

2. 2nd order cumulant and spectrum

Assumption 2.1. The process Y - ýY(t), t (tW),t(2)) - R2 ', is a contin-
uous 2-dimensional stationary random process with mean m, 0, autoco-
variance function Ry (u), u. = (t(l), u(2)) r R2, and has finite fourth order
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moments, and the fourth order cumulants Qy 4 (t 1,t 2 ,t 3 ),t 1 ,t 2 ,t 3 • R2

The 2nd order cumulant function of Y(t) is
R N, (u.) = Cov{,Y (t), Y(t + u)'

= Cum{Y(t),Y(t + U.)Y (2.1)

which satisfies

f lu(ill IRy(u(1),u(2))j du(1)du(2) < o, i = 1,2.

The spectrum of Y (t) is given by
q'(A) - )2rI 2  Ry(u)e-u"-du, A = (A(1),A(2)) c R2. 2.2)

We are concerned with the estimation of vy( y(),? A R2 given random
samples of Y(t), t E R2 from a 2-dimensional point process N.H).

Under our assumptions in the introduction, the "sampled" process Z
has finite fourth order moments. In particular

E[Z(dt)l = UfY(t)jL[N(dt)! = 0

and

pz(ditdt A U[Z(dt)Z(du)1 (2.3)

N VY(tIN(dt )Y(t 4- it)N(dUL)

R ý (u)ul3 2 duL + CN (du)!dt (2.41

so that

ýiz(B) Ry(u)ýI32du + CN(du)ý, B E: B2  (2.5)

is a a-finite signed measure on 31. If we define the a-finite measure

ALN(B) A J [13 2dlL 4 CN(dW)W, B c B32

then we can rewrite pIz(B) as

Siz = (B Ry (u)PN (du).
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If the covariance density function CN (u) exists, i.e.,

CN(B) = (36o(B) + 1N (u)du, B E B2  (2.6)

then

Lz(B) = Ry(O)bo(B) + Ry(U)[113 2 + CN (u)]du (2.7)

where
6() 1, if 0 EB

1 0, otherwise.

We define the spectral density 4)z (A) of the "sampled" process Z by

hz()A) (2 Jiue-Aýz(du) (2.8)

3k2)y(,A) + (2-y(0) + Ry(U)N(u)Cn(U)e- du. (2.9)( -27)2 (27)

If we assume that CN (U) E Li with

N = (2A)2 JeiU CN(u)du

then

CN(U) *J.N(A)eWAdA

and

(2-7) 2 fRy (U)CN (u)e-'u'du

I ( We _Ry(u)e-iu(A-v)e-U'vCN(u)du
(27T)2 J

I i RY(u)e-iu(A-v)e-iuv jI"PN (v)eiu...dvdu

2If Ry(u)e-'u (\-v)dwPN (v)dv-- (27t)2

=f J4Y(A - v)PN (v)dv.

Hence we can rewrite oz (A) as

4Z(A)=02 + f3 + ( y(0)-U)*N(u)du. (2.10)
(27T)2 +jv(
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Note that for a 2-dimensional Poisson point process, CN (U) = 0, so that

4z(A) = 132 {v(A) + (0)

and

OY( )= 22)z A Ry (0)
-~ (? _=R•z( ) (2r)1"121)

- PL" (27T) 2 (3.

However, if CN (U) 5- 0, then we need to solve

f3Ry (0__) j
P)Z(2A= Y0 )± (A)-+-27r)2 + 4y(A-u)lPN(tu)du.

We note that when the point process N(.) is Poisson then the problem is
reduced to the case in [15, 16] with uniform density function and ignoring
the time-frequency part. We will derive the following proposition.

Proposition 2.2. If

CNIU) (2.12)
32 + cn (U)

with Fourier transform

r I(A) = I f C'" Ay(uldu , L,F (X) 27T)2_ .

then (2.10) can be inverted and we have

I [Oz(A) 1 3Ry(0) 1
4) Y(A) - ~~I-(27T )2J

-JF(A- u) 4)z(l) -- 3Ry()] du} (2.13)

Proof. From (2.7) and (2.12) we can obtain

tpz(du) = I3Ry(0)bo(du) + Ry(u){, 2 + CN (u)}d du,

Ry uMdu = 32 +cN lz(du) - ORv(0}6o(du)]

I= F32 [I - -,(u)j[pz(du) - O3Ry(0)bo(du)].
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Then we take the Fourier transform on both sides, and we have

(22 I R,(u)e-i'Adu

I- .2 [ I e-u'lz {z(du) - (7)2 f3RY (0)1
ý2 (2rl f (271) 2

- Jy(u)eiu¾ z(du)

I(2 f-y2 JY(u,) Ry (0)e-iux 6o (du)] }

and

Sy(,) = () { [z (27t)2

-J )(A-u)L[z(u) 3R (2)2 I du}. (2.14)

Note that, if N(.) is a 2-dimensional Poisson point process, then the power
spectrum of the continuous spatial series Y (t), t E R2, can be calculated from
the power spectrum of the "sampled" process Z by substracting a constant
and multiplying a constant. In the general case (2.14) can be used to obtain
estimate of 4ýy(A). 1

3. Estimation of 2-dimensional power spectrum

For simplicity, we assume that the sampling scheme N (dt) is a 2-dimensional
Poisson process which is independent of the 2-dimensional continuous ran-
dom process Y (t), t E R2 . If the continuous random process Y (t satisfies the
Assumption 2.1 and a realization of the process N (.) at Ti,"2 .. TN (I1 in the
region 9J2 = (0,T 1-x (0, T1,0 < T < oo, where 9-is an expanding subregion
of R2 . The observed process is Z( dt) = Y (t)N (dt). We propose the following
statistics to estimate the spectral density function 4vy (A) (see (2.11))

Pv(A ~i(ýZ(X - _k(27)2 ýh)L..2T)
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where
N{(T)
N- T) (3.1)

ýz ( W) = IWT(A - u)IT() du, (3.2)

T--N (T) y2{,r.}

Ry(0) - N.-j=r Y , (3.3)
N(T)

N(T) 1
IT1 (- " Y(,rk)e-it' (3.4)

IT(A) -2(mT )2 k=1

where WT is a spectral window which satisfies certain regularity conditions
as Assumption 4.2 in [5] for some appropriate bandwidth BT and is given by

WT(0) 2, 0 ER 2 .
(BT) \(BOT)

Lemma 3.1. Let N (.) be a 2-dimensional Poisson process with mean intensity
Swhich is a process of events randomly occurring in the plane then

a For any bounded region A of area JAI the number of events in that
region has a Poisson distribution with mean O3AI;

- The number of events in nonoverlapping regions are independent;

and
EN(A) = O3JAI,

Cum{N(A),N(A)} = O3JAI,

Cumf{N(A),N(A),N(A)} = 131AI,

Cum{N(A),N(A),N(A),N(A)} = 131AI.

Lemma3.2. Assume t(j)Ry(t(1),t(2)) E Lj = 1,2,then

E[RT(A)I = [024,(;) + rR(0)- +0
L ~~(27T)2J T

=4)z(A)±+o(). (3.5)

Proof. See Appendix B. U
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Lemma 3.3. Assume It1IkQ~4 )(tit2 ,t 3 ) E L1, tj E R2, - 1,2,3, k = 0, 1.
Then

Co2v{IT (A ),A (2)), IT(p(1), .(2))}
- 1 Z(A (),A(2)){A(iA(l) + .(1))AT(A(2) + 4(2))

+AT(A(1) - t(11))AT(X(2) - p(2))}

+ 0 T2) (3.6)

where
Tw2

AT1()= - y wEi!iR.
Ar/'sin • /

Proof. See Appendix B. I
From Lemma 3.3, we see that CoV(IT (A), IT (4)) is asymptotically zero

when N A p(A 0). To obtain consistent estimates of ýy (\) we need to obtain
consistent estimates of 4)z(A) in (2.11). One can use the usual smoothing
periodogram given in (3.2). Details are omitted here. Or one can partition
the region (0, T1 ( (0, Tl into m 2 (T)subregions with size (0, ,TI], (0, _T

each. If nt(T) -- oo and n---) -oo when T -4 oo then the average of M 2 (T)

periodograms I T,_ is a consistent estimate of (ýz(A). This is used in the
following example.

4. An example

Here is a simple 2-dimensional AR(2) process which is generated with a
given spectrum

S(A 1 ,A2 ) = (27T)-211 + 0.2e-\'' + 0.3e-illz - 0.24e-itA ,) A" j-2,

A plot of SAS is given in Figure A.l. There are different ways to generate a
stationary process with a given spectrum. We use the one described in [7].
A realization Z(x,U) at (x, y) E R2 is given by

ij

where A1i, A are a discretization of the "support" of S(A-,, 2 ); A•1, ' are a
jittered version of Aj, Aj and u.i,j is i.i.d. uniform in (0, 27r).

A Poisson sample is obtained on (0,32] x (0,32] with N(32) = 1024.
The periodogram is given in Figure A.2. The average of 10 periodograms
from 10 independent realizations of a Poisson sampling process is given in
Figure A.3. We see that the estimate is close to the true one.
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A. Figures
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Figure A.1: 2-d theoretical power spectrum
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Figure A.2: 2-d power spectrum using Poisson sampling scheme
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Figure A.3: 2-d smoothed periodogram using Poisson sampling
scheme
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B. Proofs

Proof (of Lemma 3.2).

EfTlrfA)J E [ I2t N) (1 )~ei 21

(2irTT -)2E[ 'zct J sszd1

(27tT )2 J A J e-i~t-A Z(dt)Z ds)

If~t)~s E[Y it)YAs) (dt~Nd) C \~

I Y et)(sfl " N \dt) (ds)Z1 s)

-Ry(t sý132dtds + 136(t - s)dtdsý

where 6(x) is the 2-dimensional Dirac delta function. Thus we have

E[11l, (A)]) IJ C~Vi~t "Ry(t - s)j0 2dtds + 136(t -- s)dltds!

(2\R I R(t - s)dt ds + (2i ()2

where

(2711)2 J J1 A Ry~t -s)d td s = ( 27 )2 { i

J -i (t( I f II fA!( I i (t (2 1- s(2)) )A(2)

>Ry (t( 1) - s( 1), t(2) - s(2))dt(I1)dt(2)ds(l1)ds(2)
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)< ~ ~ _ (t (2 - ~ )t2 s() sAfd~ (2)1)

(27tr) 2 0fJ it
2
sIfo 2

x - Iu'(1 111eiu')A(l Ryu(t1)- ), t(2) - s(2))diU ct(2)ds(2)

xdy(u(1),(2d(1)du2

(2ir2 e-f i(t -(2) j -s I(2)) +( 2) ~ ( )
(2e -iu 1 0~i i(~(1Ri4fu2lu~u2

- Y LfTI- Ju( )Jeiýu( 'A( I u(2 )A),lt(2)(1-),(2))du() )dt(2)ds2

x f1 Ju ) lu(2)I d-u~(1Al -i(2A ~~Iu df1)du(2)

+ J J-~ e')M 1-i 2A(2 1R~ý) - u (2IA ) u.!1lIdu(2)I

(2 7T)2 J f _1e J( I~t  IA(R 1i(t 11( s )dtds)u 2)d

fI T



{359 Spectral analysis of randomn fields with randomn samnpling}

=I32ýy (A) + 0 - +0G) 0G+0Q~

= I32ýY (A) +

Hence,

E[)IT(X)] 0 20Y fR ( 0) + 0

ctZ(A) + 0 ({)+ (h2 0

where the 0(-!) term is uniform in A.

Proof (of Lemma 3.3).

E N Ccv Feir \Z(dr) C i cp' w~s )

Y 711 T L 1 2 r A

-E e -'r AZ(dr)~ 2Ef e i' "Z(ds) ýI

E e- ir AZ(dr( J2 ei' "Z-(ds) 12

U J J e-it e~ "EZ(dr)Z(dr*)Z(ds)Z(ds*I

E {f Ce-r AZ(dr) E J~l e-iS 1 Z(ds)
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=E [J J ei(rv )Z(dr) Z(dr*

x[ fi fiT e-i(s-s" Z(as)Z(ds*)

IxL -1 ei *) A Ry(r' - r*)E[N(dir)N(dr')]
I T

xJ J 1(ss "RY(s - s*)E[N(ds)N(ds*)]

=~ fi, I ci~r-~r')ARY (r - r') [32 drdr* + W3~r - r')drdrj]

I I

o (4{ e-itr-r* AR-y(r -- r*)drdr*

fM 2fj 2 e-ss* ý' Ry(s - s')dsds'

±13112 Ry (0)fI l C'~ ARY(r - r*)drdr* + 13-'I2 Ry (0)

' J ci'' ~Ry (s - s*)dsds*

+4 132R 2(0)

where 6(u) is the 2-dimensional Dirac delta function.
Note that
ErZ(dr)Z(dr*)Z(ds)Z(ds*(1

=ErY(r)Y(r*)Y(s)Y(s*)N(dr)N(dr* )N(ds)N(ds* (
=EFY(r)Y(r*)Y(s)Y(s*)]E[N(dr)N(dr*)N(ds)N(ds*(1

Because the mean of the stationary process is zero, we have
S(Y (r) Y ( r)Y (s IY (s* (

Qy (r - s* ,r - s*,s - s*) + Ry (r - r*)Ry (s - s*)(B)

+R r- s)RY W - s*) + Ry (r - s*)Ry (r* - s)
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and
E[N4(dr)N(dr*)N(ds)N(ds*)) �B.2.1

�Cum(N(dr),N(dr),N(ds),N(ds)} (8.2.2)
+f3drCum�N(dr),1\4(ds),N(dsfl (B.2.3)

-#-13dr Cum{N(dr), N(ds), N(ds� )}
+l3dsCum{N(dr),N(dr), N(ds )�
+f3ds� Cum�N(dr), N(dr ), �'J(ds)
±Cum{N(dr),N(dr)ICum{N(ds),N(ds)� (B.2.4

+Cum{N(dr),N(dsHCum�N(dr),N(ds1 (B.2.5)
+Cum�N(dr),N(ds�Cum{N(dr2,N(ds)� (8.2.6)

±j32 drdr'Cum{N(ds),N(ds')� 8.2.7)
+� 2 drdsCum�N(dr),N(ds')� (8.2.8)

�t�I3 2drds*Cum�N)dr),N(ds)� (B.2.9)
+132 di-dsCum{N(dr),N(dsl (8.2.10)
+� 2 drds'Cum�N(dr),N(ds)� (8.2.11)
-i-)B2dsds Cum�N (dr), �4(dr )�
+)3 4 drdrdsds. (8.2.12)

We partition (B.1(into four parts. First, we compute

(
4

p *Q,�. (r - s �r -- s', s -- s� )E :N)dr)N(dr )N)ds)N(ds L.

Equation (8.2.1) has 15 terms. Computations of these terms are very similar.
Here we consider QV'Ir - sr - ss sfl multiplying (8.2.2), (8.2.3),
(8.2.4), (8.2.7) and (8.2.12) only.

fl \4 r

(4

xQ� (r - s¾r - ss - s)Cum*�N(dr), N(drbN(ds),N(ds

(y�-j) 4 13J Q� '(0,0,0)dr

4
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27TT)

\Q(4)(r - r-ss-sCumN (dr*), N(ds), N(ds*)ýdr

- s s~s- s

1 ~ ) 32J e Cir - ý- A s r -' ,0 sOddrd

I Ti

0-~~%~( 
r,
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xQY4 ) (r-s*,r*-s*,s-s*)drdr*dsds*

The result of the first part is 0 (-) uniformly in A and pL

Now we compute

(,!T)4 J J J J ei(r-r)'eis-s)"Ry(r - r*)Ry(s - s*)

xE[N(dr)N(dr*)N(ds)N(ds*)]

- 2 ~ ) 4  { E J ,, e -irA Z (d T) 2 £ E e -i s 'PZ (d s) ý2 }

27T L2~)41 19 j' J. e-('-" 'e-i(S-S*)
x Ry(r - r*)Ry(s - s*)E[N(dr)N(dr*)N(ds)N(ds*)]

k27cTJ [,2) 904 J', e'(tr .A"Ry(r - r)drdr*

X 
2 J fg2 e-i~-s) A~ (s - s*)dsds*

+0 3 T2 Ry(O) J0 LJ e-'('-*)PRy(s - s)dsds + T42R y(O)}

Because we subtracted dominant terms, the second part has 11 terms

left. We consider Ry(r - r*)Ry(s - s*) multiplying (B.2.2), (B.2.3), (B.2.5),
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(B.2.1 1) only.

(9y4 1q't 12J 2 J
x Ry(r- r*)Ry (s -s*) CumkN (dr), N(dr*), N(ds), N(ds*)lI

I ~) 4 Jfg R 2(O)Pdr

=( 1 ) 4 2 2T

(2 4L) L' ~J L' err).Aei(Ss'sj

= 27T) ~2vu, L eLt~Ryr- )dd.

-Ry(r - r*)Ry(s- s*)Cum(N(dr*),Nds),)CmN(ds-),Nds )

=( i)4 L~J, e -ilr * ;R,(r -T)* Ry (~rdr* 13dd

= L 427T ~ )drdr*
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(9 ) 4 L' J J e-i"-r)-Ae-i(~S-SP

xRy(r - r*)Ry (s - s*)f32 Cum{N(dr), N(ds)}dr*ds"

xRY (r - r*)Ry(r - s*fl3 3drdr*ds*

The result of part 2 is 0 (1½) uniformly in X• and ýi. For the third part,
we compute

(Y-11T) 4 mj J9 fj •J ei~r-r"ei~s-s*

x Ry(r - s)Ry(r* - s')E[N(dr)N(dr*)N(ds)N(ds*)].

Here we still have 15 terms, we compute the dominant terms onlythe
others can be obtained by using the method in Part 2. The dominant terms
are (B.2.5), (B.2.8), (B.2.11), (B.2.12).

xRy(r - s)Ry(r* - s')Cum(N(dr),N(ds)jCum'N(dr*), N(ds*)l

(y-)4 P2f e- i(r-r' I A I R2 O)drdr*

TýII(0 "

Y1T -(-' A '~,
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p32R~y(O) sjfl 2  
2((1+() sin 2 Tr(A(2)+ R(2))

f4 (Lir)4 [ A( J[ (A(2+P12))22

(~jz) J"2 J" J, I ir)~is Ry(r-s)Ry(r. -S*)1 2

xCUm{N (dr), N(ds)} dr dss

27= fj 2 2 ir~i*

x Ry (0)Ry (r -s*)p3 drdTrds*

x Ry(*- s*)e-i(r- I )%ýdrdT*ds*

T(A(2 ±2p(2)+p(2) 1-

27T qj2 gqý 1j2 1M) ei(r-r*)Aeis

xRy(r - sRr*- S*)j 2 Cum N (di-f, N (ds*),drds

-~~R ((0)T)4i'RYgo)JfJ, e~)

x Ry(r - s)ei(r*-S)(A+P)drdr.ds
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2

Isin 2 TA2) t2

×Ry (r - s )Ry (r* - s )drdr"dsds"

= ( (2) 4 234J J { f2 e-it"-*Aeir-

Ry(r - s)Ry(r* - s )--" d 'drdrdsds

)4 14 F.fi2

Hence the third part equals to

where

,zl • =• ,,x! T I.__ I_0 I

27TI Y N(2I) 2•12 2

0z() ]32  () ± 
23y 0

The proof of the fourth part will be the same as part three, we will find

only four dominant terms which are (B.2.2), (B.2.9), (B.2.1O[, (B.2.121. The
fourth part equals to

[ 0 (A Thi n ) 1 (A t iF 2Iý\2 2

Y-2 Z f sin 2 -- sin 2  i 2,)21-!) 1 /10
- T ~ )__ _ _ _ ± 1 A2-t2 I
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Hence

=T2- z(A(1),A(2))JzlyjA(J) + ~p1))A7(A(2) + 42))

Ai(l)- p(l))AT (A(2) p (2)),' + 0j T2

where

Ai It) (sin +)2_ a ~R

U2R
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SAutomatic target recognition in images from sources such as video cam-
eras, infrared cameras, radar, satellites, etc., is an area of increasing im-
portance and growing concern. Pattern recognition in images largely de-
pends on two important factors: (a) a good feature extraction technique,
and (b) good feature recognition and classification. Many image pro-
cessing techniques and tools are available today to improve the quality
of acquired images and thereby enhance the feature extraction process. Fea-
ture extraction depends on the nature of the image data and application.
Statistical feature 'xtraction methods treat patterns as points in a multi-
dimensional measurement space. The statistical methods normally consider
relationships-such as joint probability distribution, interpoint distances,
and scatter matrices-to define patterns. There is, however, another ap-
proach. Recently there has been a sudden surge in research activity in the
area of feature detection and recognition using neural networks. We will
discuss the application of two interesting neural network structures based
on (a) probabilistic neural networks (PNNs) and (b) self-organising neu-
ral networks. The self-organising neural net structure is built on adaptive
resonance theory (ART), as propounded by Grossberg and Carpenter [1].

1. Introduction

Artificial neural networks (ANN) are computational models built around
massively parallel interconnected processing elements, as in biological ner-
vous systems. ANN models attempt to. achieve human-like performance in
real time. There has been a sudden surge in the development and use of
ANN models to solve a wide variety of information processing problems,
leading to the emergence of a fundamentally new and different approach to
information processing and, hence, computing. This new approach-called
neurocomputing-seems to be the alternative to "programmed computing"
which has dominated information processing for the last 45 years. Robert
Hecht-Nielsen defines neurocomputing as the new technological discipline
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concerned with information processing systems that autonomously develop
operational capabilities in adaptive response to an information environment
[5]. The following section briefly discusses some fundamental aspects of
neurocomputing, while the later sections discuss the applications of two
ANN models, viz, the adaptive resonance theory (ART) based structure and
the probabilistic neural network (PNN), in pattern recognition.

2. Fundamentals of ANN

The fundamental unit of the complete information processing system in our
brain is the neuron, which is a stand-alone analogue logical processing unit.
Each neuron is a simple microprocessing unit which receives and combines
signals from many other neurons through input processes called dendrites.
See Figure 2.1 for the structure of a neuron. Signals to dendrites are cornmu-
nicated through specialised neuromuscular junctions called synapses. The
input signals are weighted at these junctions. The synaptic strength deter-
mines the weight. The input signals are combined at the cell body (nucleus).
If the combined signal is strong enough, it activates the firing of the neu-
ron. This produces an output signal which travels along a long transmission
line like structure, called an axon, which could be many meters long. Tile
information transfer is chemical in nature but we can measure the effect as
an electrical potential. This chemical is sometimes called a neurotransnitter
and is released whenever the connection is made. The synaptic strengths (as
determined by the amount of neurotransmitter release) are what is modified
when the brain learns! The synapses along with the processing information
of the neuron form the basic memory mechanism of the brain. The brain con-
sists of tens of billions of neurons-all interconnected to form the biological
neural network.

The neuron therefore, is a basic computing element in the brain. The
neuron, like a microprocessor, receives many inputs, weights them, combines
them and finally outputs through a threshold function.

2.1. Artificial (electronic) neurons

In an artificial neural network, the unit analogous to the neuron is called a
processing element(electronic neuron). A processing element (PE) may have
many inputs and only one output. The inputs are algebraically summed.
The combined input is then modified by a nonlinear activation function
or a transfer function. The activation function could also be a threshold
function. The output of a PE can be connected to inputs of other PE's
through connection weights (synaptic strength). Figure 2.2 illustrates this
basic building block of an ANN.



{ 371 Probabilistic and self-organising neural networks in pattern recognition }

Synapses

Dendrites 0

Nucleus

Axon

Figure 2.1: The biological neuron

Xo0
X " wj1w0

Wi OUTPUTS

Xn- 1

Figure 2.2: An artificial neuron. S= WjWXi and Yi f(Sij•
(activation function).
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If there are N inputs to a neuron, then the net input to the neuron is
given by:

N-I

Si = - W iji -0i (2.1)

where

S1 : the net input to i-th neuron.
X,: inputs to the neuron.
Wji: connection weights between the i-th input and j-th neuron.
0j: the bias value above which the neuron fires.

The output of the neuron is a function of a nonlinear activation function.
A common activation function is the sigmoid function. The output Y1 of the
j-th neuron can be described as:

Yi f(Si) (2.21

1
- - - tfor a sigmoid function (2.3!

INPUTS OUTPUTS

INPUT HIDDEN OUTPUT
LAYER LAYER LAYER

Figure 2.3: An ANN structure

2.2. ANN structure

A neural netwvork consists of many interconnected processing elenments.
The ll's are normally organised into groups called lavers or slabs. There are
typically two layers which connect an ANN to tile outside world. An input
layer of neurons where the data is presented to the network as input and
an output layer of neurons which hold the result. Figure 2.3 illustrates an
ANN formed using the l't-s as basic building blocks. Any laver(s) of neurons
between the input and out put slabs is(are) known as hidden layer(s)

L" !
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2.3. ANN operation

The neural network operation depends largely on its "learning" process.
Learning is the process of adapting or modifying the connection weights in
response to stimuli being presented at the input and possibly the output.
A stimulus at the output corresponds to a desired output or response to a
given input, in which case the learning is supervised. If no desired output
is shown, the learning is called unsupervised learning.

In summary, neural networks in general are nonprogrammed adaptive
systems which process information in response to an excitation. Neural
networks are normally trained to respond to an input and are adaptive or
self-organising, i.e., they learn to solve problems purely on the basis of the
training data presented to them. Several neural network paradigms, such
as multi-layer perception, Hopfield net, back propagation, Kohonen's self-
organising neural nets, etc., have been proposed to solve pattern recognition
and other signal processing problems.

3. Pattern recognition

Neural networks are being applied to process a wide variety of sensor data.
The sensor may be a microphone, a pair of electrodes, a radar, a TV or an
infra-red camera, etc. The main aim of processing sensor signals is to extract
information about the signal source and/or the medium through which the
signals have travellti- before detection by the sensors. One aspect of sensor
signal processing is to detect and recognise certain "known" features of the
signal. This process is often termed pattern recognition. Examples include:

"* recognising a particular word or a speaker from speech signals;
"* detecting waveform shapes (ECG waveforms);
"* detecting and identifying a radar signature from a particular aircraft;
"* recognising a particular class of ship using infra-red images, etc.

The recognition process may be illustrated schematically as stages in a
signal processor, as indicated in Table 3.1. The functions in each block differ
significantly depending on the type of sensors used.

e P . , F:eature
i [)etection , Pre~pT ~ini,?, '~ 'extractionl Classificati I '' Identitication

Sen,,or l)istinguish Dita Determine l)etinume
Liignal signals reducthn Class specific

trom noise ncmbership t v pc
and clutter

l abh I l He pattetr regn it in pri w ess
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3.1. Pattern recognition in images

Pattern recognition in images largely depends on two important factors:
(a) good feature extraction techniques and (b) feature recognition and clas-
sification. A number of image processing techniques and tools are available
today to improve the quality of acquired images and thereby enhance the fea-
ture extraction process. The feature extraction process depends on the nature
of the image data and application. Conventional classifiers treat patterns as
points in a multi-dimensional measurement space, using relationships such
as joint probability distribution, interpoint distances and scatter matrices to
define classes. Neural networks have been proved to be suitable for solving
pattern recognition problems. The following sections briefly describe the ap-
plication of two different neural network structures to pattern recognition of
infrared images (IR) of ships. One of the neural networks is a self-organising
type while the other is a probabilistic neural network based on the Bayesian
classifier. The self-organising neural network considered here is based on
adaptive resonance theory (ART) proposed by Grossberg [3, 41. According
to Grossberg, the adaptive resonance architectures are neural networks that
self-organise stable recognition codes in real time in response to arbitrary
sequences of input patterns. The probabilistic neural networks (PNN) for
classification was introduced by Specht [81.

4. Probabilistic neural network (PNN)

The PNN is a neural network implementation of the Bayesian classifier and
provides a general structure for solving pattern recognition problems. The
PNN is basically a three-layer feed-forward network that uses the sums of
Gaussian distributions to estimate the probability density functions (PDF) for
various classes as learned from training data sets. Although the PNN struc-
ture resembles the back propagation network (BPN), the activation function
of its processing elements is different from that of BPNs. In the processing
elements of PNN, the commonly used sigmoidal activation is replaced by
one of a class of exponential functions. The PNN provides probability and
reliability measures for each of its classifications. A generalised structure of
the PNN is illustrated in Figure 4.1. The neurons in the input layer simply
span out the input data to neurons in the pattern layer where the data are
weighted, summed and passed through an exponential activation function,
as shown in Figure 4.2.

There are as many pattern units for each class as there are training
vectors for each class.
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o INPUT LAYER

. . .. . . PATTERN LAYER

fA, (X) f,,(X)SUMMATION UNITS

OUTPUT UNITS

Figure 4.1: Generalised PNN structure

X, X, X,

Zi x--X.W

Figure 4.2: P'attern unit in PNN

5. Parzen estimator

Par/en estimation is used to build the I'DF over the feature spdCC for each
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category. The Parzen estimator used in the PNN is given below.

fANW = (27/
2  PK(X) (5.1)

i 1

where
PK(X) = Parzen kernel exp(-(X - X,,i )i(X - Xi )/2u') (5.2)

and

fA (X): Probability density function for class A.
X: Input pattern vector of dimension p.
X,,i: i-th training pattern from class A.
a: smoothing parameter.
N: total number of training patterns.
I: represents transpose.

The equation (5.2) can be simplified as:

PK(X) =exp)X1 X,,i - 1)/u 2) (since XlX 1) (5.3)

The term X1 Xi is the dot product of the feature vector to be classified
with a training vector. If the input paths to a processing element in the
pattern layer have their weights set to the training vector, then the standard
summation produces that dot product. If the activation function of the
processing element is of the form

exp(Z I) a 2  (5.4)

where

Z- X•W (5.5)

and W is the training vector, the processing element then implements the
Parzen kernel as in (5.3). The summation laver of the PNN sums the Parzen
kernels for each class, and the output layer finally chooses the class with
the largest IPDF to the input. The output layer also includes weighting to
implement the a priori class probabilities, thus providing the full Bayesian
classification process.

Normally, the PNN calculates

N

IIfA(X) N E explZ, 1l)" °2 (5.6)

when each class has the same number of training examples. The fixed term
in (5.1 ) can be set to have any value for each category for scaling purposes.
Some commercially available ANN software normally implement (5.6) [6).
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The accuracy of PNN depends on the smoothing factor used in the
estimation of Parzen's PDF. The PNN is trained by placing the training
samples for each class directly in memory and then testing the network
on the testing samples at different values of smoothing factor U. Training
involves finding an optimal value for the smoothing factor which gives the
peak accuracy.

6. ART neural network

The ART architecture is highly adaptive and evolved from the simpler adap-
tive pattern recognition networks known as the competitive learning models.
Figure 6.1 illustrates the ART str-ture schematically [2].

ATTENTIONAL SYSTEM

ORIENTING SYSTEM

ATTENTIONAL +
0 04 VIGILANCE

GAIN CONTROL

INPUT

Figure 6.1: ART structure

There are two classes of ART structures: ARTI handles binary input
patterns while ART2 can process both binary and analog patterns. The ART
system basically consists of two layers of neurons called Fl and F2. The
input sequence activates the neurons in the Fl layer and the activity passes
through synaptic connections (weights) to neurons in the 1:2 lave where
they compete with each other and finally one node fires (winner-take-all).
The Fl layer is known as the feature detection laver and each neuron in the
F2 layer represents a different "category." Each neuron in Fl is connected
to every neuron in F2 by a bottom-up pathway and similarly a top-down
pathway exists between neurons in the F2 and Fl layers. The activated node
in thc F2 layer reinforces activity in the Fl layer through top-down priming.

.,
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The neurons in F1 therefore receive two inputs. The flow of bottom-up and
top-down information leads to a resonance in neural activity. If a particular
feature is present in both the bottom-up and the top-down signals, then a
reinforcement of F1 occurs. The attentional gain control system regulates
the top-down signal when there is no bottom-up activity by setting the
gain low and thus stopping the resonance when there is no input. The
orienting system generates a reset signal to F2 whenever the input pattern to
F1 is considerably different from the top-down information. The orienting
system or the novelty detector receives an inhibitory input corresponding
to the overall activity of F1 and an excitatory input from the input pattern,
thus keeping a vigilance on the input pattern and the categories. When a
novel pattern is detected, a reset signal is sent to F2 shutting off the active
neurons and the network hunts for another neuron to be active through a
new resonance. When a new neuron in F2 becomes active, then that node
codes the input pattern. The detailed description of ART structure is well
documented by Carpenter and Grossberg [2, 1].

7. Application of ART and PNN in pattern recognition

Infra-red (IR) images of navy vessels have been used to test the relative effi-
cacies of ART and PNN in pattern recognition. Target images were obtained
by a thermal imager operating in the 8-i 2k region, recorded using a standard
videotape recorder, and then digitised using a frame grabber to a resolution
of 512 - 512 pixels with 8 bits per pixel depth.

7.1. Image processing

An edge-based image processing technique to localise and segment the target
from its immediate surrounding background has been established in the
Guided Weapons Division. The technique prefilters the IR image with the
standard 3 • 3 median filter and then processes the image with the Prewitt
5 . 5 edge detector. The search for the targets is conducted in those regions
of image that have relatively high edge strengths. Isothermal contours are
extracted from areas of interest by an adaptive contour tracing algorithm at
a number of thresholds. The details of image processing steps for IR images
of ships can be found elsewhere [7].

7.2. Feature vector extraction

Two methods have been investigated to extract feature vectors. The fast
Fourier transform (FFT) and the ID Hadamard transform (0IT) have been
applied to extract the feature vectors from preprocessed IR images. The FFTs
of the top profiles of ships (above the water line boundary) are computed
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and the amplitudes of the first 12 Fourier coefficients are used as the input
feature vectors to the Neural Network classifiers.

The 1D HT is applied to the whole of an object along its major axis
(normally the horizontal axis). This process is suitable for images in which
reflection of the vessel radiation from the sea surface is not a significant
consideration. Objects are extracted using a local thresholding technique
and the HT is applied between object extremities detected using a 1 D Marr-
Hildreth vertical edge detector. The HT is generated by sampling the area
of the thresholded object through a series of binary masks generated from
Walsh functions [9]. Feature vectors in a form suitable for input to the ART2
and PNN are obtained by normalising the 8 lowest order components to
remove scale dependence and to retain a representation of their polarity.

7.3. Training of ART2 and PNN

Two sets of feature vectors were extracted using the FF1 and 1 D HT, as
described above, from 80 IR images of ships belonging to 4 different classes.
Each class of ship had 20 IR images obtained at various ranges. In each
class, 10 images were used as training data and the remaining 10 as test data.
The ART2 network was trained in an unsupervised incremental learning
mode on a train:- g set containing 10 feature vectors of each of 4 classes of
ships. Ths,, the ART2 network was trained separately on FFT and ID HT
feature vectors.

The PNN was trained by placing the training vectors for each class di-
rectly in memory and then testing the network on the test vectors at different
values of the smoothing factor.

7.4. Recognition of ships by ART2 and PNN

We have investigated the efficacy of the two neural network structures in
classifying IR images of ships belonging to 4 classes. We have also investi-
gated two techniques (FFT and ID HT) to extract feature vectors from the
raw IR images. Both ART2 and PNN were presented with feature vectors
from the test data set. Figure 7.1 shows the confusion matrices yielded by
the ART2 in classifying the test data set (feature vectors were extracted using
both the FF1 and the ID HT). The ART2 results have been presented at the
Second Australian Conference on Neural Networks [7]. Refinements of the
training technique have resulted in a significant improvement in the results
from those reported earlier. It is obvious from the matrices that the ART2
Neural Net was able to classify the feature vectors obtained by the I D HT
far better than it could those obtained by the FFT. The ART2 classified 97.5%
of ID HT data with 100% classification accuracy.
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Input ship classes Input ship classes
IAB CD IA B C D

Active a 6 1 0 0 Active F2 a 9 0 0 0
F2 b 09 0 0 Neurons b 010 0 0
Neurons c 4 0 10 0 (Categories) c 0 0 10 0
(Categories) d 0 0 0 10 d 0 0 0 10

u 00 0 0 u 1 000

Table 7.1: Using FFT gener- Table 7.2: Using ID HT gen-
ated feature vectors. erated feature vectors.

Figure 7.1: Confusion matrices for ART2 pattern classification.

The PNN was tested using the same set of feature vectors as that of

the ART2. The work on the PNN was carried out by the Department of
Electrical and Electronic Engineering at the University of Western Australia
through a research contract with the Guided Weapons Division for the pur-
pose of comparing the performances of ART2 and PNN. Figure 7.2 shows
the confusion matrix produced by the PNN in classifying 4 ship classes [10].
It is interesting to note that the PNN has also classified 97.517 (OD HT) of
data correctly. Although the classification results of the PNN appear to be
the same as those of ART2, the PNN has put some ship classes into wrong
bins-thereby producing confusion. The ART2 did not cause such confusion
(for 1 D HT).

Input ship class Input ship classes

A B CDi AB C D

PNN a 8 0 0 2 PNN a 10 1 0 9
Output b 0 10 0 0 Output b 0 9 1 0
Class c 0 0 10 0 Class c 0 0 10 0

d 1 0 0 9 d 0 0 0 10

Table 7.3: Using FFF gener- Table 7.4: Using ID HT gen-
ated feature vectors. erated feature vectors.

Figure 7.2: Confusion matrices for PNN pattern classification.

8. Conclusions

A brief introduction to Artificial Neural Networks has been presented. The

application of ANNs in pattern recognition has been examined. Two interest-
ing Neural Network paradigms (ART2 and PNN) have been investigated,
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yielding interesting results. The performances of the PNN and the ART2
have been compared. The PNN achieved classification accuracy similar to
ART2's, but the ART2 produces less or no confusion compared to the PNN.
In the case of the 1D Hadamard transform, the ART2 produced no confusion
at all among the 4 ship classes. ART2 placed unclassified inputs into an un-
known class, thus creating a new class. This is a desirable feature. The PNN,
on the other hand, was insensitive to the value of sigma meaning that the

classes are well separated. The data sets used are insufficient to draw defini-
tive conclusions. However, the preliminary investigation has established the

potential application of the ART2 and the PNN to pattern recognition of IR
images of ships.
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The digital computer is extremely effective at producing precise answers

to well-defined questions. The nervous systern accepts fuzzy, poorlyi
conditioned input, performs a computation that is ill-defined, and pro-
duces approximate output. The systems are thus different in essential
and fu ndamentally irreconcilable ways. Our struggles with digital comi-
puters have taught us much about how neural computation is not done:
unfortunately, the!i have taught us relativeliy little about how it is done.
Part of the reason for this failure is that a large proportion of ne'ral
computation is done in an analog rather than in a digital ma inner.

Carver A. Mead (1989)

The actions of digital computers themselves depenld vitally' upoInO ilqu ti-
tumn effects-cffects that are not, in miy opinion, entirelh! free of diffi-
culties inherent in the quantumn theoriy. What is this 'vital' quantln
dependence? In modern elctronic computers, the existence of discrche
states is ni'eded (say,', coding the diits 0 and 1), so that it becomes a
clear-cut matter when the computer is in one of these states and wheu
in aio/her. This is the verzi essence of the 'digital' nature of coinputer
operation. This discreteness depends nitimatel/ on quantum mechanics.

Roger Penrose (19S9)

1. Overview

The development of faster and more efficient computers in recent vears has
been driven by a seemingly unending thirst for communication, interaction,
automation, control issues, information availability, and a yearning for new
understanding of the self-organization principles of ourselves and our en-
vironment. The challenges of the future force us to croate and study new
concepts of adaptive information processing and to implement for faster
communication novel computer architectures based on fundamental quan-
turn theoretical principles.

Until now the increased power has been driven largely by contin-
ued refinements to microelectronic fabrication techniques, such as electronic
switches (miniaturized transistors) with higher switching speeds and asso-
ciated integrated circuits (ICs) with increased levels of integration on silicon
chips. Although the advancements in the IC hardwiring and packaging
functions have been significant, their prospect for continuing at the same
steady rates from very large scale integration (VLSI) to ultra large scale in-
tegration (ULSI) are being dimmed by physical limitations associated with
further miniaturization. Limitations of electronics include:

"* electromagnetic interference at high speed,
"* distorted edge transitions,
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a complexity of metal connections,
- drive requirements for pins,
- large peak power levels,
- impedance matching effects.

Electromagnetic interference arises because the inductances of two cur-
rent carrying wires are coupled. Sharp edge transitions must be maintained
for proper switching, but higher frequencies are attenuated greater than
lower frequencies, resulting in sloppy edges at high speeds. The complexity
of metal connections on chips, on circuit boards, and between system com-
ponents affects interconnection topology and introduces fields and unequal
path lengths. This translates to signal skews that are overcome by slowing
the system clock rate so that signals overlap sufficiently in time. Large peak
power levels are needed to overcome residual capacitances, and impedance
matching effects at connections require high currents which result in lower
system speeds. Even if much smaller logic gates are produced by utilizing
new techniques such as X-ray lithography yielding an order-of-magnitude
reduction in feature size, the speed of the IC will be limited by the intercon-
nection delays between transistors. Unlike transistor response times, these
time lags are reluctant to scale down with size. As a result there isa 10' factor
disparity between the speed of the fastest electronic switching componlents,
presently transistors that can switch in 5 ps, and the clock rates of 5 ns of the
fastest digital electronic computers.

To ensure further progress, it is prudent not to rely upon continued
refinements to hardware and software implementations. In fact, computer
architects are turning to the design of parallel processors to continue the
drive toward faster and more powerful computers. The massively parallel
organization principles which distinguish analog neural systems from the
small scale interconnection architectures of special-purpose parallel elec-
tronic processors and even more from the von Neumann architecture ot
standard digital computer hardware are one of the main reasons for the
largely emerging interest in neurocomputer science. Since presently Some
areas of microelectronics are approaching their natural physical limitations.
it is necessary to examine other technologies that may offer denser, faster
communication between chips or logic gate arrays or even piovide alterna-
tives to the gates themselves. If light could be used to transfer data between
chips or gates, the interconnection-delay problems of electronics would be
avoided and the communication would occur at the speed of light itself.

The system of linear interconnects by which nonlinear processing ele-
ments can share information among themselves is the most important com-
ponent of any parallel computer. Just as photonics is becoming the tech-
nology of the future for telecommunication and machine-to-machine inter-
connects, it also penetrates computer hardware and affects communications
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within a single computer, especially for processor-to-processor interconnects
and board-to-board interconnects of parallel computer architectures, and
even more of neurocomputer architectures. Not only does coherent light
emitted 1ýy a laser have a much higher information capacity than electrical
hardwires, but due to their boson character optical photons do not interfere
during free-space propagation. Thus optical beams can occupy the same
region of space without mutual interaction, allowing data streams to pass
through one another without crosstalk and quantum interference, hence al-
lowing multiple signals to travel the same channel in parallel. Indeed, a
good lens can image tens of thousands of fully resolved points from one
plane to another, each of these parallel channels having a theoretical band-
width far in excess of I THz. Thus a single lens could easily carry all the
telephone conversations simultaneously going on in the world at any mo-
ment in time. In this way, holographic optical interconnect technology leads
to a very high packing density, to a simplified connection complexity, and to
reduced drive requirements.

In summary of these arguments, optical technology includes the fol-
lowing advantages:

"£ high connectivity through coherent imaging,
"* no physical contact for interconnects,
" non-interference of free-space propagating signals,
"* high spatial and temporal bandwidth,
"* no feedback to the power source,
"* inherently low signal dispersion.

High bandwidth is achieved in space because of the non-interference of
optical signals, and high bandwidth is achieved in time because propagating
wavefronts do not mutually interact. There is no feedback to the power
source as in electronics, so that there are no data dependent loads. Finally,
inherently low signal dispersion means that the shape of a pulse as it leaves
its scurce is virtually unchanged when it reaches its destination.

At the interchip level of the interconnection hierarchy, two types of
holographic optical interconnects are available: free-space and guided-wave
optical technology. In the free-space type, a large array of optical signal
beams emitted from a light source is distributed by imaging it to a planar
array of optical detectors using a holographic optical element (HOE) as a
flat light diffracting device. This type of holographic optical interconnect is
three-dimensional and provides flexible implementation of wiring schemes
which are impossible to fabricate with conventional refractive/optical tech-
nology. However, it requires space because the HOE must be located above
the arrays in the optical module. In the guided-wave type, an optical signal
is transmitted and distributed from a coherent light source to an array of
optical detectors via a guided-wave optical medium such as optical fibers
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or integrated waveguides. This type of holographic optical interconnect is
more compact and more mechanically stable than the free-space type. Its
compactness is due to the planar layout of the optical elements and the use
of small waveguides. Its stability is due to the fact that all optical elements
are fixed on a common substrate. A hybrid integration procedure then en-
ables integration of laser diodes and photodiodes at any position on the
guided-wave circuit surface.

As an example of massively parallel extrinsic connections between
hologram planes implemented by free space optics, the information through-
put in one cycle of the AT&T Bell Laboratories' looped digital optical pipeline
processor is higher than that of all the hardwired telephone nets on the
whole world together. The processor is based on a family of optical modules
which creates by split-and-shift hologratings from a pair of laser beams the
array of power supply beams to read chips containing large arrays of self-
electro-optic effect devices (SEEDs) of 5ýim square. It operates at 1 million
cycles per second, slower than most personal computers, but the most op-
timistic perspectives predict the implementation of an all-optical processor
operating at several hundred million cycles per second-faster than most
supercomputers-within the next five years.

Remark 1.1. The SEED processing elements form very-low-energy electo-
optic modulators and optical logic gates based on multiple quantum well
(MQW) structures that are fabricated by gallium arsenide GaAs-gallium
aluminum arsenide GaAIAs technology utilizing molecular beam epitaxy
(MBE). Large arrays of a family of SEEDs control the intensity of a beam of
850 nm-wavelength laser light passing through them by making use of the
quantum confined Stark effect (QCSE). This quantum phenomenon causes
an electrical voltage of a few volts applied normal to the plane of the quantum
wells to decrease the material's ability to absorb light at 850nm wavelength.
Thus an electrical signal can be converted to an optical signal carried by a
laser beam. In a symmetric SEED (S-SEED) the quantum-well material is
grown inside the intrinsic region of a PIN photodiode structure, and two
such diodes are connected in series with a dc bias voltage applied. If laser
light is incident on one of the diodes, a photocurrent is generated, the other
diode acts as an electrical load, and the voltage across the first diode drops.
This voltage drop causes an increase in optical absorption via the QCSE, thus
generating more carriers and increasing the photocurrent. Positive feedback
ensues, and the S-SEED switches into a stable state in which the first diode
has a maximum absorption and transmits only a little light, while the second
diode has low adsorption and high transmission. If a higher light intensity is
applied to the second diode, the S-SEED will flip into the opposite state with
the first diode absorbing and the second diode transmitting. The logic state
of the device depends only upon the ratio of the input beams, and the state
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of the device can be read out by a pair of equally powered beams without
altering its condition, thus providing time-sequential gain. In this way the S-
SEEDs can be used as fully cascadable optical differential logic devices with
low switching energies (currently subpicojoule) and the potential speed of a
billion operations per second. In fact, they are the first optical logic gates that
are competitive with microelectronic processing elements in terms of switch
energy and cascadability. Arrays of thousands of highly uniform S-SEEDs
contained in GaAs chips can be addressed by arrays of laser beams incident
normal to the plane of the chip. The beams can set and read out the logic
state of the gates and transfer the data to subsequent similar arrays using
imaging optics [18, 130 1311.

Another example of massively parallel extrinsic connections between
hologram planes is the guided-wave optical interconnection technology used
in the field of amacronics. Amacronic structures are hybrid analog neural
processors formed by layers of optics, electronics, and detector arrays orga-
nized in a parallel way similar to the amacrine clustered processing layers in
front of the human retina. Like diurnal insects, amacronic sensor technology
finally may be able to dynamically trade sensitivity for resolution.

All the holographic optical interconnect technology underlies the fun
damental fact that in the quantized theory of the electromagnetic field the
bosons (integral-spin particles) present in a beam of coherent light traveling
in a well-defined direction are the photons. For light quanta, however, the
quantum parallelism occurs according to which different alternatives at the
quantum level are allowed to coexist in quantum complex linear superposi-
tion. The key idea of quantum holography is to mathematically model the
quantum parallelism by the Kirillov quantization. This procedure allows
to identify in a first step the hologram plane with the three-dimensional
Heisenberg nilpotent Lie group quotiented by its one-dimensional center,
then to restrict in a second step the sesquilinear holographic transform

*(t)dt' : (p(t)dt " H 1 (), p;x,y)- dx Ad

to the holographic lattices which form two-dimensional pixel arrays inside
the hologram plane, and finally to recognize in a third step the hologram
plane as a neural plane of local neural networks.

Quantum or photon holography as a part of quantum optics or pho-
tonics is the procedure of mathematically modeling the quantum parallelism
by the Kirillov quantization. It allows a unified approach to planar optical
components of digital optical computers and analog amacronic processors.
Based on the beam splitter quantum interference experiment as an elemen-
tary building unit, the quantum holographic approach is also applicable to
the Soffer optical resonator and the optical processing of synthetic aperture
radar (SAR) data which represent particularly important examples of optical
neurocomputer architectures.
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Utilizing a unified quantum holographic approach to artificial neu-
ral network models implemented with coherent optical, optoelectronic, or
analog electronic neurocomputer architectures, the paper establishes a new
identity for the matching polynomials of complete bichromatic graphs which
implement the intrinsic connections between neurons of local networks lo-
cated in the neural plane. In microoptics and nanotechnology, the quantum
theoretical treatment of optical holography is imperative because it involves
only small differences of energy and not because atoms coherently excited
by short laser pulses may be as large as some transistors of microelectronic
ICs and the pathways between them inside the hybrid VLSI neurochips of
amacronics. Actually, quantum effects can occur over distances of several
meters or even billion of light years for quasars.

Until recently optical computing was looked upon as an alternative
technology for performing an old task. Now, a paradigm shift is coming
about as a result of the realization that optical computers are funda-
mentally different from, and in many senses superior to, any electronic
computer. Certain optical computers are the only available ones that arc
intrinsically quantum mechanical processors.

H. John Caulfield and
Joseph Shamir (1990)

Not enough has been written about the philosophical problems involved
in the application of mathematics, and particularly of group theory,
to physics. On the one hand, mathematics is created to solve specific
problems arising in physics, and, on the other hand, it provides the
very language in which the laws of physics are formulated. One need
only think of calculus or of Fourier analysis as examples of this dual
relationship.
We are all familiar with the exploitation of symmetry in the solution
of a mathematical problem. On the other hand, the very assertion of
symmetry is often the most profound formulation of a physical law or
the key step in the development of a new theory.

V. Guillemin and S. Sternberg (1984)

z. Introductory comments

Real-time image analysis and processing, computer vision, automatic target
recognition for intelligent robots, remote surveillance, autonomous naviga-
tion, sound localization, speech processing and understanding, smart sen-
sors processing, and various other application areas of artificial intelligence
(AD) need to process an immense amount of data with very high velocity.
The computational power required exceeds by many orders of magnitude
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the capabilities of sequential digital computers. The Space Station program's
Earth Observing System (Eos) polar orbiting platforms, for instance, require
to process data rates up to 1.5 gigabits per second. High resolution color
images running at frame rates as low as 30 frames per second will require 108

bits per second. If one adds some form of autonomous feature identification
to the system, the processing requirement will be between 1010 and 1013

operations per second. As a final example, a human-like speech recognizer
must simultaneously perform phonetic, phonemic, syntactic, semantic, and
pragmatic analyses of its inputs and match them to 5. 10' words in real time.
These processing throughputs exceed even the most optimistic projections
for sequential supercomputers.

The problem of large-volume and high-speed computations can be
solved by

"* data compression techniques,
"* parallel data processing.

Since their very beginning, artificial neural networks have been con-
sidered as massively parallel computing paradigms. Indeed, neural nets
offer the potential of providing massive parallelism, adaption to dynamic
data structures, and new algorithmic approaches to problems in image pro-
cessing, computer vision, speech recognition, robotic control, knowledge
processing, among other application fields of Al. Ever the fastest sequential
digital electronic computers (including advanced parallel architectures) typ-
ically require processing times ranging from many minutes to several hours
for non-complex low-level image processing tasks on large image arrays.

The advantages of neural computation are now widely recognized and
neural networks form one of the most rapidly expanding areas of contem-
porary research. In fact, research in neurocomputer science, stimulated
by major advancements in neurophysiological studies, neurosynergetic un-
derstanding, optoelectronic technology, molecular engineering, and bioelec-
tronic material processing is currently in the midst of a gold rush period, an
intense period of rapid discovery and exploitation. Everywhere new veins
of gold are being uncovered and mined by thousands of prospectors, most
of whom have crossed over into this exciting new research area from a diver-
sity of other disciplines-neurobiology, neurosynergetics, quantum physics,
imaging optics, electrical engineering, mathematics, and computer science.

The fundamental characteristics of all known neurocomputer architec-
tures are the linear synaptic interconnections between simple nonlinear pro-
cessing elements, called neurons, to form a concurrent distributed processing
pattern of extensive connectivity. The processing units like the S-SEED logic
devices (cf. Remark 1.1 supra) are arranged as two-dimensional arrays of
neurons in the neural plane. Information is stored in the neurocomputer
almost exclusively in the interconnection pattern, called neural network.
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Large scale (LS) collective systems like artificial neural networks exhibit
many properties, including robustness, reliability, and fault tolerance, an
ability to deal with ill-posed problems and noisy data, which conventional
digital computer architectures do not. Adopting the synergetic point of
view, neurobiology provides existence theorems on effectiveness of neural
network parallel algorithms on appropriate problems.

For artificial neural networks to become ultimately useful, neuromor-
phic hardware must be developed. The effectiveness of neuromorphic hard-
ware is in direct proportion to the attention it pays to the guiding neuro-
biological metaphor. Development efforts in the field of sixth generation
computers have concentrated on one of two goals: to build

"* efficient hardware that effectively executes software simulations,
"* actual hardware emulators for specific neural network models.

Examples of the first are the Hecht-Nielsen Neurocomputer (HNC) ac-
celerator board for conventional serial personal computers, and the Delta
board by Science Applications International Corporation (SAIC). HNC is
also pioneering a new computer language, AXON, that is designed for pro-
gramming digital computers to simulate advanced neural networks. An
important application of the SAIC neural network software simulation is the
detection of explosives in checked airline baggage: the luggage is bathed in
low energy (thermal) neutrons and the gamma rays resulting from neutron
absorption by atomic elements in the luggage are analyzed. The artificial
neural network software then searches for specific combinations of atomic
elements that characterize explosives including dynamites and water gels.

Examples of the second can be viewed hierarchically. On the simplest
level, the information is recorded and retrieved from an erasable magneto-
optic disk by optical techniques. Higher-level building-blocks are two-
dimensional arrays of coherent optical processors [2, 3, 4, 5, 7, 126, 127,
129, 128, 142, 145, 144, 143, 146] for the analog implementation of neural
network models by holographic optical interconnects, and neural network
analog VLSI chips. For instance, the analog silicon models of the orientation-
selective retina for pattern recognition [1, 115, 117], and the analog electronic
cochlea for auditory localization [92, 115, 116] belong to this category. The
amacronic and the cochlea VLSI neurochips are made with a standard com-
plementary metal oxide semiconductor (CMOS) process [189].

Although the implementation of the various neural network models
needs to overcome many difficult optical, optoelectronic, and analog elec-
tronic design problems, their performance is modest compared with the
powerful organizing principles found in biological neural wetware. The vi-
sual system of a single human being does more image processing than do the
entire world's supply of supercomputers, and the nervous system of even a
very simple animal like the common house fly (Musca domestica) contains
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computing paradigms that are orders of magnitude more effective than are
those found in systems made by humans. Unlike conventional computer
hardware, neural circuitry is not hardwired or specified as an explicit set
of point-to-point connections. Instead it develops under the influence of a
genetic specification and epigenetic factors, such as electrical activity, both
before and after birth. How this happens is in large part unknown.

Neurobiological development processes are far too complex to hope
that a relatively complete understanding of how a perceptual system de-
velops and functions will soon emerge. But we are familiar with complex
synthetic systems whose principles of neural organization can be understood
without one's knowing in detail how the components work. Furthermore,
the same principles can be used to build neurocomputers in any of several
different technologies. Presently the most advanced neural network ana-
log CMOS VLSI chips model, to a first approximation, the time-frequency
domain processing of two highly spectacular biological neural systems: the
active echolocating system of the horseshoe bats (Rhinolophidae), and the
passive auditory localization system of the barn owl (Tyto alba) which both
produce complete maps of the auditory space from the time-frequency cod-
ing pathways. Continuing evolution, however, of hybrid submicron op-
toelectronic technology combined with neurocomputer science, the highly
promising and exciting new field of studying how computations can be car-
ried out in extensive networks formed by two-dimensional arrays of heavily
interconnected simple processing elements, will create advanced neurocom-
puters within the next decade which will be able to solve problems intractable
for even the largest conventional digital computers.

This paper concentrates on a unified quantum holographic approach
to massively parallel coherent optical, optoelectronic, and analog electronic
neurocomputer architectures. Notice that the borders between physical op-
tics, electronics, and solid state physics are getting more and more fuzzy. The
primary assumption of quantum or photon holography is that the energy
transmitted by a beam of coherent radiation is divided into discrete wave
packets, or photons, much as an electric current is made up of a flow of elec-
trons. Detailed analysis shows that the arrival times at a photodetector of
photons from a classical coherent radiation source such as a laser, exhibit the
same Poissonian statistics as does the thermionic emission of electrons from
the hot cathode of a vacuum tube. Thus, the photocurrent exhibits fluctua-
tions which resemble the shot noise of the current in the vacuum tube. The
quantum noise produced by a photoelectric detector is therefore an intrinsic
property of the radiation itself, rather than of the photon detector.

The concept of photon arises from the quantization of the electromag-
netic field. The spatial part of Maxwell's equations in vacuo

dF=O and d*F=47tj
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(differential 2-form F = B + E A dt on the Lorentz space 9 3' =a. cxterior
derivative, = Hodge star operator on A 2 (M4 )) and the bound.ary condi-
tions determine the possible frequencies v, direction and spatial wavefront
profile of the field, collectively referred to as the mode. The field modes are
described by wave vectors t 7 0 in 913. In spite of warnings, sometimes the
suggestion occurs that the Maxwell waves do form the wave functions of the
photon. This suggestion, however, is a false idea. Although a single photon
can have a definite position at one time, it is impossible to construct a posi-
tion operator for the photon. Therefore it cannot have definite positions at
all times in a specified time interval, i.e., it cannot have a definite trajectory
(Bohr's indeterminacy principle; see [139, 1801). Since in the presence of

sources, photons can be absorbed or emitted, one cannot introduce a linear
Schr6dinger evolution equation for a single photon. In fact, the modes of the
electromagnetic field must be quantized and photons of energy h-v then oc-
cur as elementary excitations driven by the quantized Maxwell field modes
of frequency v and label t.

In quantum coptics or photonics, the quantization of the Maxwell field
modes is done by expressing the time dependent part of Maxwell's equations
in the form of the equation of motion for a classical harmonic oscillator and
then replacing the classical harmonic oscillator by its quantum-mechanical
counterpart. In this way, the electromagnetic field is considered as an as-
semblage of driven harmonic oscillators. As a consequence, the energy of
the radiation field is quantized and the quanta are referred to as photons.
The state of the field can be expressed in terms of number states irt' which
are states with rit quanta occupying the mode t. These number states are
eigenstates of the Hamiltonian of the quantum-mechanical harmonic oscil-
lator. However, they are not a realistic description of a coherent radiation
field, as emitted by a laser. One formal series of number states, the so called
coherent state :a), is used to represent the coherent radiation field produced
by an ideal source such as an ideal laser operating well above threshold. In
the Dirac notation, the Glauber formal series expansion [134]

It = exp 1(.. f12) Y- (.iOCO" IT,,

describes a state Iat) where the probability of finding the mode occupied by
nr photons exhibits a Poisson distribution about a mean of Ior12 with a width
o(rl. Ignoring the slowly time varying phase diffusion, the coherent state is
considered to be a good approximation to the field produced by a coherent
radiation source as a laser.

A mathematical description of photons or, more generally, of bosons
is given by the Bargmann-Fock model of quantics [23, 781. Actually, the
Bargmann-Fock model is based on the quantum-field-theory annihilation
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and creation operators for bosons and therefore on harmonic analysis of
the three-dimensional isotropic Heisenberg nilpotent Lie group G. A first
important advantage of the Heisenberg group approach is that it allows to
define two-time averages, that is to say, mean values of mixed boson states
taken at two different times t and t' = t - x of fixed difference t - t, = x.
A second important advantage is that the Kirillov quantization reveals the
planar geometry of the unitary dual of the Heisenberg group G, that is to
say, the planarly multilayered structure of the unitary dual manifold. To
each flat layer, the Kirillov correspondence associates representations of G
of linear Schrodinger type, or representations of G of linear Fraunholer
type, respectively. Because in the quantized theory of the electromagnetic
field the bosons present in a beam of coherent light traveling in a well-
defined direction are the photons, the Kirillov quantization approach allows
to model, among other basic optical phenomena, the quantum parallelism
performed by the beam splitter quantum interference experiment and optical
holography, the functionality of holographic optical interconnects, optical
phase conjugation, three-dimensional planarly multilayered optical devices
like display holograms, and spatial light modulators (SLMs).

Display holograms are probably one of the most impressive realizations
of the unitary dual manifold of G. Starting with the beam splitter quantum
interference experiment as an elementary building unit, the key idea of quan-
tum holography is to identify the symplectic hologram plane 91 .:. N with
G quotiented by its one-dimensional center CG and to recognize via the
Kirillov quantization procedure the symplectic hologram plane N1 91 as a
neural plane of local neural networks. As a result, harmonic analysis on the
central projection G-slice G/CG provides filtered backpropagation formulae
which are at the base of the holographic reciprocity principle. Moreover, it
gives rise to the elementary holograms and the Gabor wavelets which form
total families of approximating functions in L2 (91 - 91I of decorrelating and
correlating code primitives of artificial neural networks. The neural net-
work implemented in the symplectic hologram plane 91 .: 1 explains the
robust "associative" optical memory realized by optical holograms by the
distributed nature of holographic recordings. Finally, a series of new identi-
ties for theta-null values which arises from artificial neural network identities
shows that studies in computational mathematics combined with synthetic
neurobiology may have an unexpected spin-off in pure mathematics.

Emphasis throughout the paper is placed on the application of quantum
holography to neural computer architectures. For the fairly deep details of
the Mackey machinery and the Kirillov quantization procedure underlying
the harmonic analysis of the half-line bundle G over the two-sided symplec-
tic hologram plane 91 ;. 91, the reader is referred to the monograph [155].
Technological details of the implementations are described in the references
indicated below and in the references listed in the monograph [521.
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The double-slit experiment is a phenomenon which has in it the heart
of quantum-mechanics; in reality it contains the only mystery of the
theory.

Richard P. Feynman (1918-1988)

In any attempt of a pictorial representation of the behaviour of the photon
we would meet with the difficulty: to be obliged to say, on the one hand,
that the photon always chooses one of the two ways and, on the other
hand, that it behaves as if it had passed both ways.

Niels Bohr (1885-1962)

The unitary Schriidinger evolution is totally deterministic, maintains
quantum complex superposition, and acts in a continuous way, but
the completely different procedure of forming the squared moduli of
quantum amplitudes and only this non-deterministic reduction of the
state-vector (or, as it is sometimes graphically described: collapse of the
wavefunction) introduces uncertainties and probabilities into quantum
theory. It is a probabilistic law which grossly violates quantum complex
superposition and is blatantly discontinuous.

Roger Penrose (1989)

3. Quantum holography

The vertebrate vision system is perhaps the most complex neural assembly
known. Although more details are known about vision than about any other
neural system, it is by far not yet fully understood. On the deepest level of
molecular operation, visual imaging is a quantum p-ocess. A solid object
is seen because light scattered by the object causes chemical changes in the
retinal cells of the eye. The eye is quite a good light detector: Experiments
have shown that the vertebrate's retinal rod photoreceptors can respond to
the absorption of even a single photon [14]. In general, however, many
photons are absorbed by the eye without reaching a light sensitive cell.
For this reason only a few photons in every hundred that enter the eye
are detected. Obviously the chemical changes involved in seeing an object
must be reversible. In fact, the cell reverts to its normal state after about
one-tenth of a second. It is this short light storage period that limits the
sensitivity of the eye for detecting faint objects. Photography can overcome
this limitation of the eye by storing the changes in a permanent way on
photographic emulsion.

Photographic emulsion consists of individual grains of a silver halide
compound, in which the silver atoms are ionized. When a photon is absorbed
by the photographic emulsion, an electron is emitted, in the same way as
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electrons are knocked out of a metallic surface in the photo-electric effect.
This electron can now be attracted by a silver ion to form a neutral atom of
silver. Left to itself, the neutral silver atom, surrounded by the ionic silver
halide compound, is unstable, and will eventually eject the electron and
revert back to an ion. However, if before this happens, other photons have
produced several other neutral silver atoms nearby, a stable development
center consisting of a small number of atoms can be formed. In contrast,
each grain of the photographic emulsion contains billions of silver ions.
However, when the photographic emulsion is developed, this assembly of
neutral silver atoms induces all the remaining silver ions in the grain to be
deposited as opaque metallic sil 'er.

Figure 3.1

Figure 3 1 shows several photographs of the same person taken at
different exposures. In the top left picture about 3 101 photons enter the
camera. Most of these photons are absorbed without causing permanent
change in the photographic emulsion. It is evident that 3 . 10' photons are
not enough to generate a recognizable image and the photograph appears
like random clusters of light dots. However, when the exposure increases
the number of photons entering the camera increases. The top right picture
involves about 10' photons and already, although there is no clear image, a
blurred impression of an image is beginning to show up within the clusters of
light dots. The improvement continues as the number of photons increases,
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and the final exposure involves more than 3. 1O0 photons. In this last picture,
the image intensity seems to vary smooth!y although it is built up out of
individual development centers created by the arrival of individual photons.
Although in the lowest exposure photograph the positions Of the bright dots,
signifying the presence of a development center in that grain emulsion, seem
to be random, they are not. Centers are more likely to develop in places
where the image will eventually be bright. Thus, even in a photograph, the
quantum theoretical, probabilistic nature of light detection can be seen. It is
not possible to predict with certainty where any particular photon will land,
or in which graim of the photographic emulsion a development center will
be produced.

Photographic emulsions are not sensitive to individual photons. Sev-
eral neutral atoms must be produced in the photographic detector to iorm
a development center. More efficient for imaging applications than pho-
tographic plates are the CCi) (charge coupled device) detectors They are
formed by a two-dimensional array of photon detectors laid out oP a -,ingle
silicon chip typically comprising 29 - 2' pixels of size 20 ý.rm - 20 jim. In fact,
there are many formats for CCDs available. The arrival of single photons
is detected directly by CCDs by converting them to electron-hole pairs, and
then collecting the electrons into a potential well created b\ a depletion re-
gion. The accumulated charge at each position over the detector array then
corresponds to the pattern of photons striking the CCD. The charge is read
out by clocking the potential so that buckets ot electrons transter from well
to well until they reach an integrating capacity and at, (n-chip preampli-
fier. An important feature of the devke is that each pixel con he separotely
addressed, making CCDs extremely poweril for imaging applications.

Whereas photography first processes the optical information to form
an image which is hen recorded on the emulsion o)t a photographic platic
or a CCD detector array, it is also p to record thCe raw ol.,.,va, data in
a non-localized way on the photographic emulsion or CCI) and then. place
the processing in the future with the viewer The methoI for recording
the complete raw optical data is called optical holography. It is a two-step
processing method which involves the phenomena of

• scattering,

• stationary nic,,f,," i,',-.

* diffraction.

In the first processing step, the holographic image encoding procedure,
the beams scattered by the solid object are mixed with the coherent reference
beam and the generated stationary quantum interference pattern is recorded
as an optical hologram. In the second processing step, the holographic image
decoding procedure, the quantum interference pattern is read out.
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The quantum interference patterns are not stationary unless the inter-
fering light wavelets are coherent. There are two types of coherence, both
of which are required at least to some extent, to get a stationary interference
fringe pattern. One is temporal (longitudinal or axial) coherence, which is
the requirement that the light wavelets all travel in the same time or same
frequency, i.e., monochromatic light. The other is spatial (transverse or lat-
eral) coherence, which is the requirement that the light wavelets are moving
together in phase as if they started from a single point in space. The laser
produces a high degree of both temporal and spatial coherence.

Photon
B detectors

Fully silvered Y ",

Half-silvered l

A{

Half-
silvered Fully

silvered

Source

Figure 3.2

The basic e\periniental set-up to generate optical holograms is a modi-
fied version ot the archetypical double-slit quantum interference e\periment
by which Thomas Young in 1803 conclusively verified the wave character
of monochromatic light, and (.I' Thomson, the son of .1.1. Thomnson who
first demnonstrated that electrons behave like particles, and also I)avisson
and (;ermer in 1927 conclusively revealed that electrons also behave like
waves\: downstn am, the primary w,.' is divided by a beam splitter into
two coherent wavelets which traVcil oifferent paths before recombination
anti detection; see Figure 3.2. It in the beam splitter quantum interference
experiment the two photon routes possible in the linear Mach-Zehnder in-
terferometer are exactly equci in length, there is lO0/. probability that the
photon reaches the detector A and a 0(/ probability that it reaches the other
detector B, In other words: the photon is certain to strike the detector A. If
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an absorbing screen is placed in the way of either of the two interferometer
routes, then it becomes equally probable that the photon reaches A or B; but
when both paths are open and of the same lengths only detector A can be
reached. Blocking off one of the two routes allows B to be reached. Therefore
the photon must have actually traveled both routes at once. If a scattering
object is placed in the way either of the two interferometer routes, a sta-
tionary quantum interference pattern is generated in the hologram plane
due to the incremental measuring principle of the linear Mach-.Zehnder in-
terferometer. The organization of random clusters to stationary quantum
interference fringe patterns in the hologram plane can be visualized by the
photon-counting image acquisition system (PIAS-TI) which is capable to
detect even single photons like the vertebrate's retinal rod and to obtain
images at a level of darkness not obtainable even by ultra-high sensitivity
video cameras.

Theorem 3.1. The holographic image encoding procedure is formed by
a complex linear superposition of beam splitter quantum interference ex-
periments. Conversely; the beam splitter quantum interference experiment
performed by a linear Mach-Zehnder interferometer forms a degenerate
holographic image encoding procedure.

From this result it follows that the basic quantum phenomenon of op-
tical holography is the quantum parallelism according to which different
alternatives at the photon level are allowed to coexist in quantum complex
linear superposition. The great thirty-year dialogue between Bohr and Ein-
stein [190, 191, 192, 194, 193, 195, 177] concerning the issues of the beam
splitter quantum interference experiment demonstrates the fundamental
importance of the basic holographic image encoding procedure (see The-
orem 11.3 infra).

Die kodierte Form der Amplituden-u nd Phasen verteilu ny, trn•,t die B3eze-
ichnung Hologramin. hn Gru nide ge'amnme' stellt das H,,lo,,rnmni eia
]nterferenzmuster dar, dafi durch die t.'berla'geruang der yore O~bpekt

iest reuten WAelh'ninrai l dr Ref eren zwelh' z a ta thd komn t. LDic Fank-
tia tder Referenzwielle kana man sich auch so z'erdeutli• hen, daIl.? ,urch
sie eiae Lichtwelle in Raunm "eingefroren '" wird. E~s addterea sicth
die Amplitudet ;anter Beriicksichtig'ua' ihrer Phaseabeziehungen a ad
a cht die In teas iateiit

lurij !. Ostrov'skij (1988)

"The tvarious descriptions, Dopph'r filterin,•,, aperture synthesis, hologra -
phy, and cross-correlation, diverse as they. are when described physically,
become identically when formula ted mathemnatically.

Emmett N. Leith (1978)
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4. The holographic image encoding procedure

The fundamental fact about optical holograms is that they are light diffract-
ing elements. As planar diffractive optical elements (DOEs) they are of
central importance for the implementation of neurocomputer architectures
by holographic optical interconnects. The starting point of the holographic
principle is the important fact that all detectors are phase-blind at the fre-
quency range ot the visible light. To overcome the phase-blindness, optical
holography encodes in the writing step the phase information of the optical
signals by a geometric encoding procedure. The word holography comes
from the Greek holos meaning entire, complete and graphein meaning to
write, to record. Subsequently, optical holographic technique decodes in the
readout step the phase information by light diffraction. The holographic
reciprocity principle mathematically describes the decoding procedure.

In order to get mathematical insight into the geometric encoding proce-
dure of optical holography by sesquilinearization of the multiplexed signal
energy, let (91) denote the Schwartz space of complex-valued C- wavelet
packet amplitude densities on the real line 91 rapidly decreasing at infinity.
Consider 8(91N as a dense vector subspace of the complex Hilbert space L2 (I )(R
of square integrable complex-valued densities with respect to Lebesgue mea-
sure dt of 91 under its natural isometric embedding. Endow 8($91) with the
standard scalar product \ . i . } and the associated total signal energy norm

11 • 12. In optical holography, a square-law detector encodes in a massively
parallel way the optical path length difference x - 91 and the phase differ-
ence y E 91 of two coherent signals having the same center frequency -v 44 0.
Assuming that the writing complex-valued wavelet packet amplitude densi-
ties 4) (t')dt' and p( t )dt with respect to Lebesgue measure dt' = dt belong to
the space 8(91), the coordinates (x, i3) of the stationary quantum interference
pattern are simultaneously recorded in the hologram plane 91 91 by the co-
herent two-wavelet mixing 4)(t' )dt'.. :(t )dt. In view of the phase-conjugate
cross terms or interference terms (*kp) and (\4) ý) of the total signal energy
distribution identity or signal intensity relation

with complex weights v, w t C, the sesquilinear extension to cS(91( 8(!N) of
the mapping

(, Vi •-1(4', (p;x,.4( 1 [ 4,(t - x) Mt c 2'1iv Itit (v ýf 0)

describes by quantum complex linear superposition of the phased two-time
average the first step of the angle image encoding procedure of optical holo-
graphy. In this first processing step, each object to be globally stored by the
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coherent object signal beam is encoded in the hologram prior to its recording
by mixing (or multiplexing or heterodyning) an unfocused linearly polar-
ized coherent non-object-bearing reference signal beam having a particular
angle between its wave vector and the normal vector of the hologram plane
9`1 --. R Therefore the sesquilinear mapping defined by the assignment

L(t')dt' :.: y (t)dt " H I (*, (p; x, u) • dx A dg

is called the holographic transform of the complex-valued writing wavelet
packet amplitude densities [162, 150, 151]. It should be observed that un-
like sequential data processing, the holographic transform of mixed wavelet
packet amplitude densities as indicated above does not treat time as a se-
quencer but as an expresser of information similarly to biological neural
systems where time is used throughout as one of the fundamental repre-
sentational coordinates. Moreover, it should be noticed that the coordinates
(x, y) of the stationary quantum interference pattern are independent of the
distance between the object to be globally recorded and the square-law de-
tector located in the hologram plane. It follows by quantum theoretical
state-vector reduction which is a nonlinear procedure:

Theorem 4.1. Let ýp and (p be wavelets in $(9'a1 of unit energy I•4, 12 - Ii !2
1. Then the phased two-time average

which records the stationary quantum interference pattern generated by the
coherent two-wavelet mixing i,(t')dt' p(lt)dt provides the probability of
detecting a photon within a unit area attached to the point (x,g) of the
hologram plane 91 : N.

The method of optical holography or coherent wavefront reconstruc-
tion applies to all waves: to electron waves, X-rays, light waves, acoustic
waves, and seismic waves, providing the wavelets are coherent enough to
form the required stationary quantum interference patterns in the hologram
plane [161]. Therefore a laser is not really needed for optical holography; it is
merely the use of solid, three-dimensional objects that calls for light wavelets
whose coherence length exceeds the path differences due to the unevenness
of such objects. Dennis Gabor used in 1947 a filtered mercury arc lamp to
get temporal coherence and a pinhole to get spatial coherence in the first op-
tical hologram. The main reason for the discouraging quality of his optical
holograms was that no light source existed at that time with the combined
intensity and coherence that was needed. When laser light became avail-
able, the quantum interference experiments by Emmett N. Leith and Juris
Upatnieks at the University of Michigan in 1962 resulted in excellent optical
display holograms that astonished the scientific community.
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In radar analysis, the mapping (x,u) -4 H,(1,(p;x,y) is called the
narrowband cross-ambiguity function [16,48,94,186,122,125,153,155] and
is used to characterize the resolution performance of radar signals. In the
following it will be convenient to define the narrowband auto-ambiguity
function by H,(ip:.,. : H,(4,4;.,.). The mapping

ip(t)dt -4 H (x, i) •dx A dij

which describes the self-interference of photons is called the holographic
trace transform. In view of Theorems 3.1 and 4.1 supra, the holographic
trace transform models the classical beam-splitter quantum interference
experiment.

Remark 4.2. The only examples of strictly convex objects for which the
scattering amplitude density has been analyzed fairly completely for high
frequencies (-vi -4 oo) are the compact spheres of the Euclidean space 9V-.
According to the synergetic point of view, however, optical holography does
not attempt to mathematically predict the scattering amplitude densities but
geometrically encodes and decodes the scattering amplitude densities and
their phases as an experimental result utilizing coherent reference beams.

Remark 4.3. A vital element of optical neurocomputer architectures is the
medium for optical hologram recording because it plays the role of an opti-
cal holographic associative memory. An associative memory has the basic
capability of storing a number of associated information patterns (ut, v), so
that subsequent presentation of one pattern u recalls its paired pattern v.
This is an inherently parallel procedure, and the attractiveness of optical
implementations of holographic associative memories has been recognized
for some time. Electro-optical photorefractive crystals (PRCs) are known
to form reusable optical holographic storage materials that can be infinitely
recycled and do not require additional processing. The crystals of the sillen-
ite family, bismuth silicon oxide Bi 12SiO 20 (BSO), bismuth titanium oxide
Bi12TiO 2o (BTO), and bismuth germanium oxide Bi1zGeO20 (BGO) exhibit
the highest sensitivity to light among presently known PRCs [178]. Opti-
cal holograms are recorded inside PRCs directly by illuminating the crystal
with laser light. The light induces a charge redistribution inside the crystal
[49, 50] and in a certain characteristic time interval a dynamic equilibrium
between distributions of the recording light intensity and internal electric
charge is established. The electric charge induces an internal electrostatic
field that changes the refractive index of the crystal by the electro-optical
(Pockels or Kerr) effect and forms a volume holographic optical element
(VHOE). As the interference pattern undergoes changes, a new charge dis-
tribution is formed, hence a new optical hologram is recorded. This charge
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distribution again comes to a dynamic equilibrium with the recording quan-
tum interference pattern. If the period during which the interference pattern
changes is sufficiently long, the electro-optical crystal rerecords an optical
hologram. Hence the electro-optical PRCs can adapt itself to varying exter-
nal conditions, such as occasional temperature-induced changes of the phase
difference between the writing object signal beam and reference signal beam,
or mechanical instabilities. This is an extremely important feature because it
allows more reliable storage of scattering objects by almost-real-time quan-
tum holography.

Research in the area of real-time quantum holography in electro-optical
PRCs needs to focus on materials in order to achieve a faster speed of photo-
response (< 1 msec), greater photorefractive sensitivity, control over image
decay, and reduced fanning. Molecular engineering recently developed
the highly interesting and promising organic crystals. As an alternative,
bioelectronics or molecular electronics are oifering photochemically sensi-
tive materials like biopolymers of the chlorophyll-protein complex and the
retinal-protein complex for real-time holographic recording. It has been
discovered that specifically bacteriorhodopsin which belongs to the retinal-
protein complex and which can be extracted from the purple membrane of
Halobacterium halobium is a very attractive recording material for real-time
optical signal processing. Depending on the preparation procedure, these
materials have a very wide range of photoresponse time running from 100
sec down to 10 psec, and an extremely high spatial resolution limited by
the dimensions of the molecules. However, research in this area is still in
the early stage of development and for the present the studies are far from
the practical implementation of potential biological neurocomputers. Nev-
ertheless, investigations of the simplest optical processors and of associative
memory elements based on biopolymers are being intensively developed in
various laboratories all over the world so that it is expected that on the basis
of purple membranes of halobacteria an optical memory with a capacity of
109 bits/cm 2 will be created in near future [1481.

Remark 4.4. According to the rules of quantum theory, any two states what-
ever, irrespective of how different from one another they might be, can coexist
in any quantum complex linear superposition. This is the deep and deci-
sive reason for the fact that high-resolution radar imagery of the terrain and
optical holographic imaging are closely related concepts. In fact, airborne
and spaceborne SAR imaging systems are active remote sensing systems
which illuminate the terrain with electromagnetic energy at relatively long
wavelengths (radar L-band center wavelength A = 23cm, C-band center
wavelength A = 5.7cm, X-band center wavelength A = 3.1 cm) as the plat-
form moves with respect to the ground being mapped. SAR imaging systems
coherently detect the signals returning from the terrain (called radar return)
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in order to store them in amplitude density including phase until all of the
returns are collected. Simultaneous amplitude density and phase recording
is performed by multiplexing or heterodyning the radar returns with a refer-
ence signal in order to generate microwave holograms [55, 93]. The signals
that are collected and coherently superposed in SAR systems by small an-
tennas are not already focused, as is the case in real aperture systems like
radar altimeters. Because extensive processing is required to form the SAR
image from the radar return, optical signal processing techniques have been
applied to the collection and processing of SAR data. Chronologically, the
coherent optical systems developed at the University of Michigan regarding
applications to the processing of SAR data form the oldest branch in the
family tree of optical computing [32, 33, 62, 90, 941. SAR coherent imag-
ing systems can be regarded as optical neurocomputers which implement a
Doppler filter bank by a relatively static reflection pattern of the architecture
mirror [26, 881. The two-dimensional quantum parallelism inherent to the
optical data processing approach is in large part responsible for the success
of SAR coherent imaging.

Remark 4.5. Since the advent of optical holography there has been a strong
interest in replacing lenses and other crucial parts of optical systems by high
performance HOEs. In particular, optical SAR data processing systems may
be realized by optical heads which include high performance hololenses.
Many HOEs are fabricated by recording the stationary quantum interfer-
ence pattern between two mixing laser beams. The use of digital computer-
generated hologram (CGH) techniques, however, avoids the technological
difficulties involved in the interferometric HOE fabrication. Moreover, one
benefit that digital CGHs can offer that is not available with optical holo-
graphy is the ability to deal with objects that exist only mathematically.
Finally, high quality digital CGHs to implement holographic optical inter-
connects of high circuit density may be fabricated with the same technology
used in the manufacture of CMOS VLSI circuit chips [79, 81, 82, 87, 89, 124,
175, 176]. The geometrical CGH encoding computations for specific HOE
pattern parameters are performed with a standard computer aided design
(CAD) station. Upon completion of the HOE pattern database generation
and conversion of the pattern by a subroutine to the required formatted
data, a digital computer controlled output device such as a Perkin-Elmer
electron-beam high-resolution micro-lithographic system then writes the de-
sired geometric pattern on photoresist, which is subsequently processed to
produce the finished transmissive or reflective holographic element. It is at
this intermediate level of lower throughput requirements where sequential
processors play a role in vision and image processing. Alternately, digital
CGHs may be realized by writing the appropriate geometrical pattern on
a SLM. In any case, digital CGHs are at the base of a technology trans-
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fer from microelectronics to microoptics or amacronics and form a bridge
between digital computer and optical neurocomputer architectures. Since
atoms coherently excited by short laser pulses (Rydberg atoms) may be as
large as some transistors of microelectronic ICs and the pathways between
them inside the CMOS VLSI chips [10, 202, 203], the quantum theoretical
treatment of optical holography is of particular importance for amacronics
(see Section 10 infra) and nanotechnology.

Investigators in one field may very well never have been aware that the
Heisenberg group had been found in some field not seemingly related to
theirs. Another factor certainly contributory to its relative obscurity is
that what I call "the Heisenberg group" is not in fact one object, but a
collection of similar objects, rather like a fu nctor, or a scheme in algebraic
geometry, or even a combination of several overlapping functors. Thus
one has to look with a certain pair of spectacles in order to see the topics
as being united via a single common phenomenon.

Roger Howe (1980)

Perhaps the most rewarding aspect of analog computation is the extent
to which elementary computational primitives are a direct conseqluence
of fundamen tal laws of physics.

Carver A. Mead (1989)

I would like to express my belief that the holographic concept of Gabor is
as fundamental as the general relativityl theorem of Einstein, and it has
to be explored further for a better understanding of nature in which we
live.

PAi Greguss (1970)

Man sollte alles so einfach wie m6glich machen, aber nicht einfacher.
Albert Einstein (1879-1955)

5. The Kirillov quantization

Let G denote the multiplicative group of all unipotent real matrices

ii : = (X, Yj, z)

with unit element (0, 0, 0). Then G is a simply connected two-step nilpotent
Lie group, diffeomorphic to the differential manifold (91 :i R) - 91, with
one-dimensional center Cc, = {(0,0, z)lz E 9R;. The polarized presentation

(X1 Y IZ1) (X2,Y2,Z2) = (XI + X2,Y I+ Y2,Z1 + Z2 + X I 2)
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and the equivalent isotropic presentation

(x 1 ,yI,zl). (x2,yz,z2) = (xI + x2,u1 +y2,zi +z2 + I(xvyJ2- X2Y))

show that G is a realization of the three-dimensional Heisenberg group [23,
56, 186, 1551. The Haar measure of G is Lebesgue measure dx : : dij dz of
the underlying differential manifold 9j3. The Lie algebra g = T(ocdO(G) of
G is formed by the upper triangular matrices {(x, 1, z) - (0, 0, 0)Ix, i, z E 9V,.
In terms of the canonical basis {P, Q, Z} of g which is given by the matrices

P:= 00 0 , Q:= 00 , Z:= 0 0 0

00 0 0

the Heisenberg commutation relations read as follows:

(P, Q=PQ-QP=Z, (P, Z=0, [Q,ZI=0.

Thus the center c ý 9i.Z of thL Heisenberg Lie algebra g is one-dimensional
and satisfies exp(c) = CG. Obviously

id 0 0 b = 0 00
00 0 -b a

for a, b, c E 91. The adjoint action (x, 9, z) "- Adc (x, y, z) of G on g linearizes
the action of G on itself by inner automorphisms and is therefore defined by
conjugation:

'C C) Is xC Z (0 a c+bxag
0 1 g' 1 9 0 bx ot)

With respect to the basis ýP, Q, Zý of g it follows

A dc,(x,y,z) = 0 I ((x,y, z) t_ G ).

Consequently the identity

AdG o exp = exp ocdc

holds as usual on p. If {P*,Q*,Z* denotes the dual basis of ýP, Q, Z, the
coadjoint action (x, y,z) ,-4 CoAdG(x,y,z) of G in the dual vector space

T =T•,,0)(G) of pi is given by the formula

CoAdG (X, Y,z) = 01 -x ((x,y,z) e G).
(00
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Hence

CoAdc,(X,zY, ZWZP +-lQ" +VZ*)=

(L +-vi)P* + In1 -vx)Q* +-vZ*,

where the triple ,ý,iriv) denotes real coordinates. From this identity the
Kirillov coadjoint orbit picture of G becomes apparent: For each center
frequency -v ý 0 the orbit of the point (0,0,-v) under the CoAdG-action
of G is the affine plane O0 in g* through the point vZ* parallel to the plane
spanned by ý(P*, Q*, through the origin of g*. For -v = 0 the points ( TI, 0) are
zero-dimensional coadjoint orbits O(9 •,) of G located in the plane spanned by
'P*, Q*• through the origin of g*. Notice that the symplectic plane (, (v i 0)
carries the canonical differential 2-form

Wr) ) =-v dL. Adq

which endows (0,, with a well-defined orientation. The point-orbit

_.n,((L, r1 E 91 . 9) can be identified with the Dirac measure ,
located at the point (L., r) of the "singular" plane v = 0.

In terms of the Heisenberg nilpotent Lie group G, the Kirillov quanti-
zation procedure means the choice of an irreducible unitary linear represen-
tation U of G acting in a complex Hilbert space 'h and the coadjoint orbit

Ou associated with the isomorphy class of U. Recall that U is a continuous
homomorphism of G into the unitary group U(9-0 of ft, i.e., U : G , U(:})
is a mapping such that

U((x I, .YI,ZI) (X2,iJ2,Z2) U(xI,x i y ,zI ) (2,12,Z2

U(O,0,0) = idj(,

and such that the mapping G W 4 ((x,y,z ,zP) '-i U(x,'qz)ýi4 h• is
continuous. Irreducibility means that U{I,) is not obtained as a direct sum
of two nontrivial linear subrepresentations of G. Equivalently, there exists
no proper closed vector subspace 4 ý0' of W-f invariant under the action of G
by U in 9W.

Acc~rding to the Stone-von Neumann-Mackey theorem [155] the Kir-
illov quantization problem has a solution unique up to unitary isomorphy:
For any given center frequency v ? 0, the central character

Xv : CG D (0,0,z) •-) e 276z

determines up to a unitary isomorphism a unique infinite-dimensional irre-
ducible unitary linear representation Uv of G in the standard Hilbert space
9X = L2 (9q) which acts on the vector subspace 8(91) according to the rule

U (X, Y, Z)*(t) = e2,i•'( Z f jt) V t - X) (t E 91).
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Thus for all elements (x, y, z) e G, the transition amplitude

U,(x,j, z)q E 8(9)

is obtained by time shifting and phasor multiplication with respect to the
frequency v # 0 of the wavelet Aý E S(9).

Linear representations of G that are unitarily isomorphic to one of the
representations (U,,L 2 (91))(_v 7½ 0) of G are called linear representations
of Schr6dinger type. The Kirillov correspondence assigns to the coadjoint
orbit (O,, w) E g*/CoAdG(G) (-v 0 0) of the point (0,0,-v) in g* the iso-
morphy class of (UL, L2 (91)). Notice that this isomorphy class contains the
Bargmann-Fock model of quantics describing bosons by annihilation and
creation operators (cf. Section 1 supra), and also the linear lattice represen-
tation of G (see Section 11 infra). Each element of the isomorphy class, i.e.,
each linear representation of Schr6dinger type of G realizes (Ut, L2 (91)) by
quantum complex linear superposition.

Notice that the complex vector space of C°-vectors for the linear rep-
resentation U,, ('v #: 0) of G acting on X = L 2 (9M) is given by the Schwartz
space SM)8 on 9R, and that the differentiated form of U, reads

d
ULIP) = -sUv,(exp(sP)). o 0

U,(Q) = dU,.(exp(sQ))s() =27Ti-vt,

Uv(Z) = -dsU,,(exp(sZH., o =2riv.

The linear operators I-a/at,27ti-vt' determine a representation of the
Schr6dinger operators by skew-symmetric operators. In particular, these
operators satisfy the Heisenberg commutation relation [23, 155]

[P, Q] = PQ - QP = 27riv.id (Nv E 9,v # 0).

Shortly after Werner Heisenberg introduced the commutation relations in
quantics, Hermann Weyl discovered in 1928 that they could be interpreted
as the structure relations for the real Heisenberg Lie algebra g. The com-
mutation relations combined with the Parseval-Plancherel theorem and the
Cauchy-Schwarz inequality provide the Heisenberg inequality [15]

which expresses the local/global duality between the wavelet P E 8 (9N) and
its Fourier transform 3"* E 8(9f). A standard density argument shows that
the Heisenberg inequality extends to all elements of the complex Hilbert
space X = [_2 (9q). It implies the classical Heisenberg Uncertainty Principle

AU,(P) . AU,(Q) >t nl-vl (v E 91, v # 0)
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in terms of the standard root-mean-square deviations of the operators U, (P)
and U, (Q) acting in Xf = L2 (91). Expressed in terms of the canonical basis
{P, Q, Z} of the Heisenberg Lie algebra g, the classical Uncertainty Principle
takes the form of the Robertson relation [149]

AU,(P) . AUl,(Q) > 1/21U•,Z)l (-v e SR, -v $ 0).

The Uncertainty Principle has been one of the key relationships in
quantum theory for over sixty years. In his Chicago lectures of spring 1929,
Werner Heisenberg regarded this inequality as the precise mathematical ex-
pression of the Uncertainty Principle within the formalism of quantics [691.
Moreover, it has been recognized as one of the fundamental results in signal
processing [13, 40, 140, 198]. Nevertheless, in the context of quantum holo-
graphy it is very important to appreciate that the Heisenberg Uncertainty
Principle does have a number of serious weaknesses. These are particularly
related to the fact that the standard deviations AU,(P) and AUV(Q) which

are defined by the square root of the expectation values only give very gen-
eral information about the spreads of the probability density functions and
are insensitive to the fine structure of quantum interference patterns [139,
180, 181]. The structure of the Heisenberg group G, however, includes the
Poisson summation formula and is therefore rich enough to getting around
this inadequacy of the Heisenberg Uncertainty Principle. Indeed, an appli-
cation of the linear lattice representation 61 of G to the interfering wavelet
packet amplitude densities enables the rigorous establishment of the quan-
tum parallelism according to which different alternatives at the photon level
are allowed to coexist in quantum complex linear superposition (see Theo-
rem 11.3 infra).

Let U, denote the contragradient representation of LU,, so that

U•,(x,j, z) = tUv((x, Jz)-}

holds for all elements (x,y,z) c G. Obviously

U.,ICc = X, UvICc = X-, (-v E %R,-v # 0).

In terms of neural network theory, U,, is the feedback or backprojection
representation of G associated to U., (-v 5 0). The flatness of the coadjoint

orbits (0, ,wc, ) e p*/CoAdG(G) and (0 ,,cur) j E g/CoAdc(G) (-v #
0) in the dual vector space g" of the Heisenberg Lie algebra g associated
by the Kirillov correspondence with the isomorphy classes of U,. and UL,
respectively, is equivalent to the square integrability modulo Cc, of U., and
U,,. If G/CG is endowed with the differential 2-form

Wl = dxA dy,
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induced by the form Woc), on 01, the central projection and backprojection
G-slice theorem follows:

Theorem 5.1. The holographic transform is the coefficient form of the linear
Schr6dinger representation U, of the polarized Hcisctnboir group G pro-
jected along the center Cc, onto IG C-, Wl. Thus the Kirillov quanti/a-
tion identities

H I V,(tU', x,1.dx i(xAOi4t .twi
H I ,'.)x, L).dxi~~ A -:lxtj0q h•

hold.

The irreducibility combined with the unitarity of the linear Schrudinger
representation UL 1 of G implies that the commutant ot LIf is isomorphic to the
compact torus group T. I Hence from the central projection G-slice theorem
it follows:

Corollary 5.2. The holographic trace transform

1, (t Idt . , H 1 ,': x, . dix1 dA C

extends to a mapping ot[ (N) into I (9IN NI such that the ldentit\

Ili',,:xuj dxX\d(1 1 (y:\, ii dxAdto

implies q',( t )dt c,4(t Idt where c i denotes a constant phase factor

The free choice of the phase factor c - -i reflects the tact that only the
phase difference is oi physical importance. Therelore the holographic image
encoding procedure needs the mixing of a coherent reference ,ignal beam
by a linear Mach-Zehnder interterometer to incrementallk record the phas'e
of the object signal beam in the hologram plane 9 1 91.

I holo,'rao, art, rc'cordipis of fl Wi Ih'.;Nit'ni of iitt'r'rt' atn t' flat h'rn sat"il
t o '," 17 irn ,', I ith / "so b/t'cf ', anoi a i rft'rt'tr c t 'c ,o' '." ý'ct iii fhli
math/ ntattt a! rt'e;r'st'ntatioit of flit tite'rte'ret'nc pa ftthr; t tttcvtt then',
is nofhifi 'Xc'/it arlttrary it iftatfoi to dtstitt /lt'sh oni w '' trwan, f ithe

other. We find the holohrain transmittanct of at plane holohram to b,
syimlmet ric in the ctniplex anplitfud,'s of the two foreint znINas

Robert/. Collier, Christoph B. Burkhardt,
and Lawrence H. Litt (1971)

The cross-correlation 7imypoint, htwet'ver, better than anty other, ren-
dt'rs understandable the well knton all-range-focusin.' capability of tith'
synthetic apertur' radar system, implied il our holographic viewpoint.
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Since the form of the recorded signal., as manifested in the quadratic phase
factor, is a function of range, it is apparent that each range element must
be processed differently, for example, by correlation with a reference
function which is different for each range. Since the pulsing provides
resolution in range, we can store the data from each range separately and
process them differently, so that each range is cross-correlated with the
reference function proper for that range. Thus, the synthetic antenna
is in effect focused simultaneously at all ranges, a most remarkable feat
when vieu'wed in terms of the capabilities of conventional antennas.

Emmett N. Leith (1978)

6. Metaplectic covariance

Another important advantage of the Kirillov quantization approach lies in
the fact that the hidden symmetries of the holographic transform

ýP(t')dt' ) (t)dt H (ý4, 4):x,tj). dx A dcfi

can be expressed by the group of automorphisms of the Heisenberg nilpo-
tent Lie group G keeping the center Cc pointwise fixed. This group, the
metaplectic group Mp( 1, R), forms a twofold cover of the symplectic group
Sp(ljtR = SL(2,9i). Its natural action on the hologram plane !Ti .: il pre-
serves the center frequencies v : 0 [155, 165, 187]. Its action on the complex
Hilbert space 12( (1, is performed by the metaplectic representation a. The
representation u of Mp(1, 1) is a projective unitary linear representation of
SpOl,1 }in L2 (!R) and satisfies the metaplectic covariance condition of the
Kirillov quantization

LI(9) I tl,,(xL•,0) af(.) _ U,,M(q -1fxý111,0}l

(Ux, 1) - !'R 91), forall g Sp(O,9!]). It follows

Theorem 6.1. The holographic transform satisfies the metaplectic covariance
identity

r - -o' ( ¢ 'g).:x 1 x d 1

Ni_ a tlW,;(,g}).:x,~j dxAdij

for all complex-valued wavelet packet amplitude densities ql{t')dt' and
4o(t)dt belonging to S(9T) and all elements g c Sp(1,9t).

Notice that the action of Sp(1,93) in t2(91) by the metaplectic repre-
sentation ar includes the dilations by real scaling factors ca y- 0, and the
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one-dimensional Fourier transform -", both being of importance for the Ga-

bor wavelet transform. Indeed, for the diagonal matrix

g•= 0 a-

in Sp(1, 91), the scaling (or zooming) identity

oa(g,,.l()Odt = Ic11-1 '2*b(C- t)dt

follows, and similarly for the Wevl matrix

q,) 0 1

of Sp(l,9.) the relation

oT(giclt)dt - ýTrt)dt

holds for all , ,_ 801t.
A Fourier transform hologram is an optical hologram which records

the stationary quantum interference pattern of two coherent wavelets whose
complex-valued wavelet packet amplitude densities at the symplectic holo-
gram plane -• N :1 are the Fourier transforms of both the object and the
reference wavelet. It follows as a special case of the metaplectic covariance
identity of the holographic transform:

Corollary 6.2. For the complex-valued wavelet packet amplitude densities
4,t') dt' and gi(t) dt in S(N) the 90' rotation identity

H, (7ýr,,,'Tq)ý x,.ul)-dx A dy - Hi (ý, 4ý-t ;, u x) -dx A di

holds.

If ', Ut)dt - ',-t)dt denotes the complex-valued wavelet packet

amplitude density of the time-reversed optical signal, the Fourier inversion
theorem yields the identity

io(9 )tk, (t)dt - l (t)dt.

Thus the hologram plane rotated through 180" corresponds to the time-
reversed writing signals.

It should be observed that the Weyl matrix go, the diagonal matrices

g,(a / 0), and the unipotent matrices

( 1 0)
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for u E 91 are generators of the group Sp(1,91). In fact they give rise to an
Iwasawa decomposition

Sp(1,91) = KAN

into compact, diagonal, and unipotent subgroups. As a paraxial ray-transfer
matrix, g"L E Sp(1,9q) defines a thin cylindrical lens of focal length f = -1 /u
and cr(g"L) defines the chirp modulation operator

oug " )i4(t)dt = e-i'li/2W':4(t)dt

of chirp rate u # 0. For u. < 0 the chirp modulation operator cu(gu) E
U(L 2 (91)) defines an up chirp amplitude density modulation and for u > 0
a down chirp amplitude density modulation.

Corollary 6.3. The chirp amplitude density modulation oi(g") of chirp rate
u # 0 can be corrected by a thin cylindrical lens of focal length f = I/u.

Finally, for the drift-length transfer matrix

0=~~ 1~t

the identity

.'{c(g)V)(t)dt = e- if,/'4)sign i
t  (g- t ).4(t)dt

follows where sign u = u/lul. The phasor occurring in this formula arises by
the Maslov index which is responsible for the fact that Mp1, 91) = Sp(1, 91 )
forms a twofold cover of Sp(1, 91). Since optical holography is phase sensi-
tive, it is exactly this sudden change in phase (Gouy effect) of

7T/2 = 7/4 - (-7T/4)

which makes it not appropriate to place the hologram plane in the focal
planes of the beam expanding lenses of the basic interferometric set-up.

It should be observed that the construction of the metaplectic represen-
tation u of Mp( 1 91) is completely analogous to the construction of the spin
representations of the orthogonal groups (symmetric tensors taking place of
anti-symmetric tensors).

Example 6.4. Let T > 0 be given and denote by

PT(t)= {0 Itl>-T

the rectangular pulse of duration 1. In terms of the triangular pulse

A ) I-1itl Itl <1 I) 0 Itl > I

A
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and the cardinal sine mother wavelet

sincx in x5
"1 x =0

the holographic trace transform of VT (t)dt takes the form

H I (OT;X,y 10• dx A dyj = A ( x) sinc y(T -jxl) - dx A dy.

An application of Theorem 6.1 supra shows that the chirp pulse density
a(gU)*T (t)dt of duration T and chirp rate u # 0 admits the holographic trace
transform

HI (r(gu9)*TlX, 10)-dx A dyj = A ( TX) sinc(yd - u~x) (T - jxj). dx A dyj.

Satellite altimetry uses the ranging capability of radar sensors to mea-
sure the surface topographic profile. An example of an advanced-type sys-
tem is the SFASAT altimeter which was put into orbit in June, 1978. The
satellite orbital altitude was 790 km and the platform velocity (ground track)
v 6.6 km/sec. SEASAT was in operation for a total of 105 days. During that
time, the altimeter provided profiles of the ocean surface with an accuracy
of a fraction of a meter. In the altimetry mode, SEASAT operated at a center
frequency of 13.5GHz. The stable local oscillator (STALO) generated a se-
quence of 12.5 nanosec pulses at a 250 MHz center frequency which has been
applied to the chirp generator. The SEASAT chirp generator was a surface
acoustic wave (SAW) device fabricated on a lithium tantalate substrate. The
resulting chirp modulated pulse had a linearly decreasing frequency with an
80 MHz bandwidth and a pulse duration T = 3.2 lisec. The pulse repetition
frequency (PRF) was 1020Hz. During the transmit mode, the chirp pulse at
250 MHz has been upconverted to 3375 MHz, amplified to a 1 W level, and
multiplied by 4 to 13.5GHz. This also multiplied the bandwidth by 4 in
order to achieve the desired 320 MHz bandwidth and height measurement
accuracy of 0.47m. In the receive mode the chirp pulse have been upcon-
verted to 3250MHz, amplified to 0.1 W, multiplied by 4 to 13.0GHz, and
used for mixing with the received echo signal.

Example 6.5. In SAR remote sensing systems (see Remark 4.4 supra), a
target at distance ro with velocity v relative to the moving platform induces
a relativistic chirp amplitude density modulation o(g") of the received echo
signal of chirp rate

Aro

where A = c/MvI denotes the center wavelength of the coherent radar. The
dependence of the chirp rate u of the range r0 is called the range-azimuth
coupling.
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In the SAR optical signal processor, let A' denote the wavelength of the
coherent light scanning the holographic film of transport velocity v'. If

v0 = v/v', ,A0 = AN/'

are the relative SAR platform velocity and the relative radar wavelength,
respectively, then the radar return focuses at distance

f Aor 0

0

from the hologram plane. It follows that the relativistic effect of the platform
motion generates an axial astigmatism. To compensate the linear range
variation of the focal length f, a wide-screen equalizer is introduced in the
hologram plane. Such an equalizer takes the form of a conical lens or a tilted
cylindrical lens [90,93,94] which are components of a correcting anamorphic
optical system (cf. Corollary 6.3 supra). The recent developments of SLMs
have supplied an attractive replacement for the holographic film as an input
medium. Moreover, two-dimensional optical data processors using laser
diode illumination, acousto-optic (AO) cell data input and a CCD detector
array for the output have been designed. For each realization of the SAR
data processor, however, it is important to notice that the spatial resolution
of SAR imaging systems is independent of the range re to the target and the
velocity v of the radar platform.

In the imaging mode, SEASAT SAR operated at a center frequency of
1275MHz (L-band, A = 23.5cm) with pulse duration T = 34 4 sec and PRF
selections of 1464, 1537, 1580, and 1647Hz admitting a spatial resolution of
25m. The depression angle ranged between 670 to 730 and produced an
image-swath width of 100km. The antenna was a 10.74m by 2.16m phased
array system deployed after orbit insertion. The microwave holographic
data for each 100km wide image-swath have been optically processed to
produce four film strips each of which covered a width of 23km and a
length of several thousand kilometers.

The first Shuttle imaging radar (SIR-A) experiment was launched on the
second flight of Columbia in November, 1981. The satellite orbital altitude
was 250ikm and the image-swath width 50 km in order to cover a surface area
of about 10 million km 2 . The SAR antenna of 9.44 m by 2.09m radiating area
was stowed inside the Shuttle cargo bay and operated when the Shuttle was
in an inverted attitude. As in the SEASAT SAR, the transmitted pulse was
a chirp pulse of 1275 MHz center frequency admitting a spatial resolution
of 38m. The image data were recorded as holographic film on board the
Shuttle. The data film was developed and then processed at the laboratory by
coherent laser light to generate the original image film at a scale of 1 : 500,000.

A second Shuttle imaging radar (SIR-B) experiment was conducted in
October, 1984. For SIR-B the SAR antenna was modified, however, to permit
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the depression angle to be changed during the mission within a range of 300
to 75'. The center wavelength A was the same as in the earlier missions.
The satellite orbital altitude was 225 km and the spatial resolution improved
to 25 m.

Figure 6.1

As an example, Figure 6.1 shows a SAR image of the Lakshmi region
of the planet Venus. It has been generated by the Soviet Union VENERA
15 and 16 orbiters through the cloud-shrouding atmosphere of Venus which
is impenetrable for visible light. NASA flew a SAR around Venus in 1990
for the Magellan mission. The radar is operating at a center frequency of
2385 MHz and provides a resolution down to 250 m; see Figures 6.2 and 6.3.
By the late 1990s the Cassini spacecraft may be put in an orbit around Saturn
and image its moon, Titan, at L-band and K-band on flybys.

Remark 6.6. The Heisenberg group G carries a sub-Riemannian metric and
a sub-Laplacian [1741. On the fibre '*zy.•)(G) with base point (xy,z) E G
of the cotangent bundle T*(G) of G, the associated bundled quadratic form
Q is given by

Q(.Y..)U.(,l,'v) = +vY)2 + (T1 -,vx) 2 .
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Thus Q( x.u,) is a parabolic quadratic form with one-dimensional null-space
spanned by the vector (-u, x, 1) E 01, (01, wo, ) E g*/CoAdG (G). The sub-

Laplacian O3G of G forms a sub-elliptic linear differential operator given by

The Heisenberg helix is the analog of a geodesic for the sub-Rieniannian
geometry of G defined by the sub-elliptic bundled quadratic form Q on
T*(G). This fact corresponds to the "expansion theorem" discovered by
Dennis Gabor in 1965 which says that information attached to an optical
signal pattern is not carried by "rays", but by a certain "tube of rays" the
cross-section of which is proportional to the square of the center wavelength
A of the optical signal [57].

I have no doubt that my latest publication is my luckiest find yet. I
have also much perfected the experimental method, and I can now pro-
duce really pretty reconstructions from apparently hopelessly muddled
diffraction patterns.

Dennis Gabor (1900-1979) to MaxBorn
(1882-1970) on 15th June, 1948

The coherence of laser light finds a spectacular application in the making
of holograms. A typical hologram looks like a gray piece of plastic
with no evident image on it. However, the hologram actually has a
microscopically fine and highly complex pattern of lines and spaces. Now
illuminate the developed hologram by the same laser system, except that
the object has been removed. The pattern on the hologram converts the
pure laser beam into a precise replica of the pattern of ordinary light that
would be obtained if the object were still there. In this way, the hologram
acts as a window. Each eye looking at the illuminated hologram sees
a different point of view, thus creating a three-dimensional image by
an illusion of depth and solidity. By changing one's vantage point, it
is possible to see behind things and around corners, just as if one was
looking at the real object through an ordinary window. The image has a
realistic three-dimensional appearance. Holography resulted in a whole
new concept in the development of imaging systems and technology.

Enders A. Robinson (1989)

7. The holographic image decoding procedure

In the following, the symplectic homogeneous G-manifolds

(0( 1 ,wo,) E g*/CoAdG(G),
(0_|,wo-|) E g*/CoAdG(G),
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and the central projection G-slice G/CG will be identified with the two-sided
symplectic hologram plane 9R ( 91. Then the Heisenberg nilpotent Lie group
G is a half-line bundle over the symplectic hologram plane 91+ 91, the two
sides of which carry the canonical differential 2-forms wi = dx A dr3 and
w- 1 = -dx A dy = dy A dx, respectively. In view of the square integrability
modulo CG of the irreducible unitary linear representations U I and UI of G,
an application of Schur's lemma provides the biorthogonality relations [119,
136, 155, 1681

if HI W, (pb'-, ' x, y)R , (*, (p; x, ij)dxdii ( pl' (pJ) •')

for the complex valued wavelet packet amplitude densities *'(t ) dt, (p' (t) dt,
*b(t)dt, qp(t)dt in 8(91). Therefore the dyads

Eq ,.x, y). (p " H I(*' ,p'- ,x, U) (x, y,0t

((xg) E M ,.1 91), which embed 0p' E 8(9M) and *4 E 8(9S), respectively,
into the Hilbert-Schmidt (HS) operator-valued differential 2-forms acting
on L2 (9R), define a Ui-system (E(.,., and a Ul-system
(E(., .; x, ,)),X+,,t of coherent states based on the symplectic hologram
plane 91 9R [120, 1341. Observe that these coherent state systems provide a
quantum theoretical description of nonspreading wavelet packets [57, 134,
1621 and therefore of the Gabor tubes of rays (see Remark 6.6 supra).

Theorem 7.1. For all complex-valued writing wavelet packet amplitude
densities

i4'(t)dt, (p'(t)dt, xP(t)dt, (p(t)dt

in 8(91) the gain equations

J E(*',(p';x,tj)dxdy = ,I'4'i2',
,.R ;,91

J J (4,w;xy)dxdy = 114'12P
91+91

hold.

Remark 7.2. Similar inversion formulas can be established for the affine
coherent states defined by the wavelet transform and the irreducible unitary
linear representations of the non-unimodular affine Lie group

G, =(ia,O)Jc > 0, 3 c"'
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of the real line 9R ("at + 13 group"). The affine wavelets are particularly useful
code primitives for voice decomposition [65].

The non-abelian solvable Lie group G + has the presentation

(axl,30)" (a2, 02) = (al c2,xM1 P2 + 01 )-

Of course, G may also be represented as the group of real matrices

0c 1)0 c>,E1

under matrix multiplication. The left Haar measure of Gi is given by
dox o, d1/lx 2 and the right Haar measure by dx (,o dla/x. Apart from the
trivial one-point coadjoint orbits located on the real line 91, the affine group
G4 of 91 admits exactly two non-trivial coadjoint orbits, the open upper
half-plane 0 f and the open lower half-plane 0. It follows from the Kirillov
coadjoint orbit picture of G1 that every irreducible unitary linear represen-
tation of G + of dimension > 1 is unitarily isomorphic to either U or its
contragradient representation U, where U can be realized on the complex
Hilbert space L2 (91) by the assignment

U(o, 13)iJt) = eifo' C(t + log x) (t E 91),

and U by the action

Wao, m3) (t)} = e- i", 1P(t + log a)} (t E 91)

on ) c 8(91). More convenient are the realizations on L2 (9lj) given by

U((x 3)lp (t) = e i 13t vi.(cxt ) (t > 0),

and on L2 (91_ ) given by

U(a, 0)3 *(t) = e-i II V,.(at) (t < 0).

Notice that the irreducible unitary linear representations U and U of G
are square integrable and that their coefficient functions form the wideband
ambiguity functions [48, 122].

Remark 7.3. One of the most dramatic deployments of computer technology
in radiological diagnostic imaging is the development of computer-aided
tomography (CT). In this case and, more recently, in magnetic resonance
imaging (MRI) systems, the computational capability made possible by the
advent of high speed computers has been an absolutely essential ingredient
in the process of image formation. Similarly to holography, the raw data
provided by the physical imaging system in CT or MRI is in an encoded
form which bears no discernible resemblance to the two-dimensional array
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of information comprising an image that can be visually perceived. CT
generates an image of a cross-sectional slice of the body lying perpendicular
to the long axis of the patient being examined. Unlike optical holography, in
which the symplectic hologram plane 9? ± 91 is transversal to the direction
of laser irradiation, CT is based upon the measurement of the attenuation
of X-ray beams lying entirely within the plane of the section being imaged.
Turning from optical holography to CT [1211, the preceding identities give
rise by an application of the spectral theory of the irreducible reductive

dual pair (Sp{(1,9R),6(n,9R)) inside Sp(n,9•) [78, 1591, to the singular value
decomposition of the Radon transform qR: $(gin) -- 8(91 x S-•,) acting on
functions f E S(9M') according to

Zf (r, w) J f(x)r(r-(wIx))dx

(ep = Dirac measure located at the paint p E 91). It follows that the inversion
problem for the Radon transform 2R which underlies CT, MRI, and tomo-
graphic reconstruction for geophysical applications is ill-posed. Neurocom-
puters, however, seem to be more appropriate to solve ill-posed problems
than conventional digital computers.

As a special case we obtain from Theorem 7.1 supra the following result
which describes the readout procedure of optical holograms, i.e., the retrieval
of geometrically encoded information by adaptive resonance. I t is important
to appreciate that the energy normalization is a nonlinear procedure.

Corollary 7.4. Let (P E 8(91) and assume that IP E 8(9q) satisfies the nor-
malization condition 11t1l2 = 1. If 3- denotes the Fourier transform acting
on 8(9q) then the filtered backpropagation formulae of degenerate coherent
four-wavelet mixing

ff H H(ib,(°;x,tj)e-2ni'jt•(t-x)dxdii =i(t)

ff[ H1 *(v;,o;-y, x)e-2"g T;(t -x) dx di =3 1P(t) t •

hold.

The preceding reproducing diffraction integrals prove the fundamen-
tal law of optical holography, or holographic reciprocity principle, which
governs the angle image decoding procedure of optical holograms: The
complex-valued wavelet packet amplitude density, including the magnitude
and the phase of the conjugate object signal recorded in the hologram, can be
read out simultaneously by illuminating the hologram with the conjugate to
the original reference signal beam. The conjugate beam which becomes un-
focused by a beam expander provides the illuminating wavelets with their
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proper phase factors for adaptive resonance. Thus the geometric encoding
procedure of optical holography is able to overcome the phase-blindnpss of
the detectors at the frequency range of visible light: the holographic decoding
procedure reconstructs the complete wavefront creating a real pseudoscopic
image of the object. The reconstruction of a Fourier transform hologram
establishes the 90' rotation identity of the Corollary 6.2 supra.

A complex-valued wavefront recorded in a planar optical hologram is
effectively stored for future reconstruction by an application of the funda-
mental law of optical holography. Holographic interferometry is concerned
-vith the formation and interpretation of the stationary quantum interfer-
e.ice patterns which are created when a coherent wavelet, generated at some
earlier time and stored in an optical hologram, is later reconstructed accord-
ing to the holographic reciprocity principle, and caused to interfere with a
phase-related comparison wavelet. It is the storage or time delay aspect
which gives the haolographic procedure a unique advantage over conven-
tional optical interferometry. It permits diffusely reflecting or scattering
objects which are subjected to stress to be interferometrically compared with
their non-deformed state. Actually, the holographic interferometry has be-
come one of the most important applications of the fundamental law of
optical holography.

After the quantutn of energy has alread ,t gone through the double slit
screen, a last-instant free choice on our part gives at will a double-slit
interference record or a one-slit-beam count. Does this result mean
that present choice influences past dynamics, in contravention of every1
formulation of causality? Or does it mean, calculate pedantically and
don't ask questions? Neither; the lesson presents itself rather as this,
that the past has no existence except as it is recorded in the present.

John A. Wheeler (1978)

I argue that the very structure of all qua ntum theories suggests a revision
of the classical notion of space and time. I will present evidence t0 .
two copies of space-time, rather than one, are the proper arena for 1
quantum processes. At the heart of this observation lies the very will
known fact that every set of equations and formulae in quantum theory,
from which all the transition amplitudes are determined, may always
be written in two equivalent forms, differing by complex conjugation.
We obtain one set from the other by reversing the sign of the imaginary
unit i..

two Bialynicki-Birula (1986)
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8. Optical wavefront conjugation

The pair of reproducing diffraction integrals of the Corollary to Theorem 7.1
supra describing the holographic filter bank is also at the basis of optical
wavefront conjugation by means of real-time quantum holography 149, 50]
in electro-optical PRCs. Two of the beams are referred to as pump beams
and are arranged such that they are co-linear and counter-propagating and
overlap both spatially and temporally in the symplectic hologram plane
M - 91. The third beam, commonly called the probe beam, can interfere
with each of the pump beams to generate transient phase gratings within
the electro-optical PRC. These gratings arise because the refractive index of
the PRC changes in response to the intensity of laser light: as the pump
beams interfere with each other, the regions of constructive and destructive
interference cause a corresponding modulation of the refractive index. The
pump beams then entering the PRC can be deflected by the induced gratings
to produce the fourth, wave-front conjugate beam. The wavefront conjugate
beam propagates back along the path of the probe beam with a wave vector
opposite to the wave vector of the probe beam.

Recall that neurocomputers consist of weighted linear interconnections
between arrays of simple nonlinear processing units, tile neurons. Informa-
tion is stored in the neurocomputer almost exclusively in the interconnection
pattern. Learning dynamics are used to evolve the interconnection strength
pattern as a succession of small perturbations. Because degenerate four-
wavelet-mixing wavefront conjugate mirrors, as described above, provide
retroreflection and optical tracking novelty filters, Theorem 7.1 is at tile basis
of neural network models implemented by local neural networks of reconfig-
urable holographic optical interconnect patterns in optical neurocomputer
architectures [2, 3, 4, 5, 7, 79, 81, 82, 83, 124, 126, 127, 129, 128, 130, 131, 142,
145, 144, 143, 146]. In the long term, real-time holography in PRCs appears
to be the most appealing reconfigurable optical iph-rconnection technique.
If the holographic associative memory has net giai comparable with the
losses in the resonator cavity, the output will converge to a real image of the
globally stored object: the expanded conjugate reference signal beam acts
as an optical scanner for readout of the associate information. In case of a
linear resonator memory, gain is supplied by the wavefront conjugate mirror
which provides regenerative feedback, whereas in case of a loop resonator
memory, gain is supplied by an externally pumped electro-optical PRC.

The Soffer optical resonator forms an implementation of an optical
neurocomputer architecture which includes two degenerate four-wavelet-
mixing wave-front conjugate mirrors. For more details, the reader is referred
to Section 15 infra.



{ 42S Quantum holography and neurocomputer architectures }

Geometric quantization provides the structure for the geometric realiza-
tions of the irreducible unitary representations of the groups involved
in physics.

Norman E. Hurt (1983)

9. Radial isotropy

The vast majority of optical systems are designed to operate over a field of
view that is radially isotropic. If the processing elements of an optical system
are constrained to be radially symmetric, it is only necessary to optimize the
performance over a radial slice of the field of view. The system is then
guaranteed to have the same performance over ary radial slice of the field
of view. The advantages to optimizing over a radial slice as compared with
the full field of view are speed and cost. Each additional field point used
in the automatic design routine such as CODE V increases the computation
time, and, therefore, the expense [67].

A complex-valued writing wavelet packet amplitude density iýf, t )dt in

S 9:R) is called radially isotropic if its holographic trace transform H1 (U'; x,i
dx A dt_ is a radial differentiat 2-form on the symplectic hologram plane

* :, i.e., if H U •1'; x, W dx A di. is invariant under the natural action ot the
orthogonal group O(2,!)11 in IN !X

Theorem 9.1. The complex-valued wavelet packet amplitude denqsitV U' t dt
on 'N is radially isotropic if and only if q', . Si /admits the form of I Fermite-

Gaussian eigenmodes

U, c,,FLi,

where c,, , T'is a constant and 1H,, (t) c 2 h,, (t) is the Hermite function
of degree n u- 0.

The proof follows by Kirillov quantization: There is a complete clas-
sification of the irreducible unitary linear representations of the diamond
solvable Lie group T - G having U, as their restrictions to G. The Kirillov
corresponding coadjoint orbits in the dual of the non-exponential diamond
lie algebra are parabaloids of revolution f 154]o

It follows from the preceding theorem that a quantum mechanical har-
monic oscillator is equivalent to an assembly of bosons each having one
polarization state. Notice that the Hermite-Gaussian eigenmodes (Pf,,), -(,
are crucial for the phenomenon of daydreaming in optical resonator neuro-
computers 15, 162].

Corollary 9.2. The elementary holograms (H1i (H. H,,:., .. ,, , e form a
Hilbert basis of the complex Hilbert space L2([ ... T).
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The orthogonality of the elementary holograms

in the complex Hilbert space L2(9! !R) implies that in the Shannon sense
the mutual information of the code coefficients is zero. Thus the code
coefficients are non-redundant, they form a statistically independent en-
semble, and image coding in terms of the decorrelating family of code
primitives (Hl (H,,, IF1: ., .))., _eo, t, is optimally efficient. Let the element
tl' E L2 (91 9!) admit the expansion

Y"_ c m ,,, , , -1 ( H m n, H . ; ., .)

with complex coefficients given by

c,,..... = tl H Ii~l ,I-m, ,,;.,.i' ( l _> 0,n Ti -ý 0)

It follows

Ly !c ... ,2

and by switching to the tinle-asyvnietricstate- vector reduction procedure of
quantics, the probability tiat i, t 0 in L2 (91 ,:) collapses to the elementary
hologram I I .... IH.., is given by the ratio

2I (m , n C).

The non-deterministic collapse of the wavefunction il, , I 2'(! 91 represents
the nonlinear aspect of the Kirillov quantization procedure because it violates
the quantum complex superposition principle. It is complementary to the
linear aspects of quantum holography.

Corollary 9.3. The quantum mechanical mode competition in recognizing
Oin I -2 (9I1 1N) is determined by the probabilities (Ic ..... 2i'P2i ),n _,e .0.

Amacronics is a name coined for layered structures of processing lehc-
tronics, binaryt in icrooptics, and detector arrays, with applications Itn
ilnlaging systems with processing right at the focal plane. Ainacronmic

structures are based on lessons that we learned from Mother Nature.

Human beings live quite happily with a data transfer rate of a few' kilo-
cycles, massively parallel yes, but not very fast. All imaging systems
suffer fromn the Von Neumann bottleneck in electro-optics (in computer

syste'ms all the processing fun lctions go through a single' CPU, the ce'1-

tral processor unit; it sloiws donm the overall system). Eh'ctro-optical
siystems are' similar; all the optical information goes through a detector
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array at the focal plane which is the bottleneck. We are developing lay-
ered structures of optics and electronics in a parallel form (a processing
unit per pixel), somewhat like what happens in front of the retina of your
eye where you have similar amacrine clustered processing layers. The
word "amacrine" comes from the Greek a macros meaning short range.
The idea is to couple dynamically clusters of detector arrays. With bi-
nary optics we may be able to build systems with peripheral vision much
more motion-sensitive than on-axis fovial view, or systems tuned for
edge detection or noise reduction.

Wilfrid B. Veldkamp (1989)

Binary optics: The optics technology of the 1990s.
Wilfrid B. Veldkamp (1990)

10. Amacronics: the microoptics layer

The one-dimensional unitary linear representations of the polarized Heisen-
berg group G are given by the assignment

U (,,)(xyz)4(t) = e2 niILx I l )l*(t) (t E 91).

These representations which are, of course, irreducible are called represen-
tations of linear Fraunhofer type of G. Under the Kirillov correspondence
they admit one-point coadjoint orbits {(JiL,0 ) = e ,n)I(L, T) E 9R , . 91, in the
"singular" plane -v = 0 spanned by {P', Q* 1 in g" = T("0,0.ol(G) which form a
set of Plancherel measure zero. The Plancherel measure 7tG of G is uniquely
determined by the Haar measure dx . dij ::. dz and concentrated on 9R - f0}.
It is given by

TG = I-v dv.

The character formula of G [155] provides the radial fanin/fanout distribu-
tion on the symplectic hologram plane 91 + 91:

(0.0)= f TrG/cU-vdnTG(V)

The tempered distributions TrG/cU, (-v # 0) follow from the trace identity
for the linear Schr6dinger representation U i of the Heisenberg group G

TrG/C U11 = (H,.,.

by time scaling t " v/i t. Projection of the Kirillov corresponding
paraboloids of revolution in the dual of the diamond Lie algebra along the
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axis allows to create microscopic multi-level surface relief patterns of high
quality diffractive HOEs [175, 176]; see Figure 10.1. The focal length of the
diffractive microlenses in the HOE arrays is given by

f = Ivi,

and therefore inversely proportional to the center wavelength A. The plane
v = 0 in g* forms therefore the focal plane layer of the amacrine structure.
The quantization of the continuous phase profile into discrete phase levels
is performed by using the VLSI ion-etching technology.

Both digital and analog optical computing requires sufficiently power-
ful and bright sources of radiation characterized by a small size and a highly
efficient transformation of pumping energy into coherent radiation output.
Diode or injection lasers provide the best choice in terms of power consump-
tion and size. The coherence length of their radiation output is sufficient for
optical computing purposes.

In the AT&T Bell Laboratories' looped digital optical pipeline proces-
sor the array of power supply beams to read the optical logic devices is
created from a pair of laser beams by a HOE component. This holograting
of Dammann type [82, 173, 1851 is a multi-beam splitting DOE the pattern of
which is computed to generate a uniform 4 x 8 array of wavelets from one
incident laser beam. The two 850 nm diode lasers can thei efore be used to
generate two interleaved 4 x 8 arrays so that one array illuminates all the
upper S-SEED diodes and the other illuminates all the lower ones. There
are two advantages in this scheme: two lasers can supply twice as much
power as one laser, and, by pulsing one of the pair of lasers, all of the devices
in the array can be preset into the same logic state. The two beams from
the laser pair are combined at a "knife-edge." The two counterpropagat-
ing beams are focused to two adjacent spots, one of which is reflected, the
other transmitted. This pair of spots is imaged via the holograting onto the
device array.

Presently the most advanced implementation of two-dimensional
matrix-addressable arrays of laser diodes for free-space holographic opti-
cal interconnect patterns and photonic switching in optical computers is
formed by a hybrid optoelectronic chip recently developed by the AT&T
Bell Laboratories in collaboration with Bellcore. It includes more than
2 million electrically pumped vertical-cavity surface-emitting lasers (VC-
SELs) arranged on a GaAs substrate of size less than 1 cm 2. The active
area of the micro-lasers emitting infrared laser light of about A = 85000317
wavelength consists of thin indium gallium arsenide (InGaAs) layers sand-
wiched between more than 600 successive molecular beam epitaxial (MBE)

or epi layers of GaAs and aluminum arsenide AlAs. Each of the cylindrical
microlasers has cross-section of about 5mm and has been etched by a
photolithographic process. The lengths of the microlasers are about 5.5 4m,
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and greater than 99.5% of that is passive material. All the laser diodes
are individually addressable, independently of the other ones by a current
of about 1 mA and therefore are particularly suitable for performing the
angle image encoding and decoding procedures of optical holograms. In
practice, a simple 4 x 4 matrix-addressable surface-emitting laser (SEL) array
(MASELA) was used to address an optical hologram containing 16 distinct
images, each microlaser reading out a separate image. The two-dimensional
MASELA is a technology to which conventional edge-emitting diode lasers
have no practical counterpart. It is the aim of the present development
in amacronic sensor technology, to integrate the optical source chip into a
hybrid VLSI neurochip.

The Heisenberg group is a natural setting for defining and analyzing
certain continuous and discrete concepts arising from the Fourier trans-
form and associated with nonstationary image representation.

Richard Tolimieri (1990)

Now it is together, blinking happily.

Alan Huang (1990)

Fractals or fractal objects are self-similar structures or scale-invariant.
It can be understood as a form of symmetry.

Barry R. Masters (1990)

11. Hololattices and holofractals

The implementation of two-dimensional pixel arrays by holographic opti-
cal interconnect patterns [79, 81, 82, 83, 185] and analog VLSI wavefront
arrays [1] suggests to look at the restrictions of the sesquilinear holographic
transform

iý(t'}dt' ýo o(t)dt ý-4 H I (*b, ýp;x, y) -dx A dig

to lattices located inside the symplectic hologram plane 9I + 91 [23, 157].
The quadratic lattice Z (P Z embedded in the symplectic hologram plane
91 - 91 may be considered as the projection onto G/CG of the 3-cubic (uni-
form) lattice

Lo := {(,,,', ý)1J ýi Z, 4' E Z, ý E Z}

and the normal subgroup

L := Z,!,Z.;,CG
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inside the three-dimensional Heisenberg nilpotent Lie group G along its
center CG. Form the compact Heisenberg nilmanifold Lo\G associated to
G which is a circle bundle over the two-dimensional compact torus V.2 An
application of the Weil-Zak isomorphism

"' (•(x,vJ,z) "-- e2 •" j e2 nhn(-x)) (e N) E S(9M)

allows to realize the linear Schrodinger representation U 1 of G as the linear
lattice representation

61 = Inld G(XI)

of G [59,152,153,155]. Thus, 61 is a representation of G of linear Schr6dinger
type which reveals to be of extreme importance in quantum holography.

Remark 11.1. The projection of the Weil-Zak isomorphism wi onto the first
coordinate axis gives rise to the periodization map

p : * - (x -) w1 (C )(x,0,0)) (N4 ' 8 (t)).

Combined with the one-dimensional Fourier transform T - c(g0 ), the pe-
riodization map p gives rise to the Poisson summation formula for the ele-
ments of the space 8(91) and therefore to the Whittaker-Shannon-Nvquist-
Kotel'nikov sampling theorem which allows the reconstruction of a band-
limited signal from its uniformly distributed samples utilizing translates of
the cardinal sine mother wavelet (cf. Example 6.4 supra). Interleaving in
the Cross Interleave Reed-Solomon Code (CIRC) is employed to redistribute
data symbols in the bit stream prior to recording so that consecutive words
are never adjacent. Recording in a non-localized way guards against the very
likely occurrence of burst errors. Upon dc-interleaving during the CIRC de-
coding procedure, the shuffled words are placed back in their original and
rightful position in the stream, and the errors are distributed in time.

Remark 11.2. For the affine Lie group G, of the real line 9f (see Remark 7.2
supra), however, there exists no analog of the linear lattice representation 61
of G. Therefore, there is no summation formula of Poisson type for G,.

From the isomorphy performed by w, between the linear Schr6dinger
representation Ui and the linear lattice representation 61 of G follows the
identity

H1(q),(p;x,y) ' dx A dy = (6i(x,,g,0)wl (Ob)Jv%,((p)) ' dx A dig

inside the pixel I - 1/2, +'/21 x I - 1/2, +1/2 in the symplectic hologram plane
9q .;9q
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As a first application, the preceding identity allows to decide in a math-
ematically rigorous way the Bohr-Einstein dialogue [190, 191, 192, 194, 193,
195, 177] in favor of quantum theory. Thus the linear lattice representation
61 of G allows to overcome the inadequacy of the classical Heisenberg Un-
certainty Principle in describing by standard root-mean-square deviations
the beam-splitter quantum interference experiment and its application to the
holographic image encoding procedure. In fact, Bohr's intuitive argument
cannot be rigorously based on any of the known uncertainty relations. The
comprehensive structure of the Heisenberg nilpotent Lie group G, however,
is ideally suited for the purposes of quantum holography: An application of
the preceding identity establishes the cjuantum parallelism in a mathemati-
cally conclusive way. In fact it proves.

Theorem 11.3. The holographic image encoding procedure implemented by
a linear Mach-Zehnder interferometer generates an optical hologram if and
only if quantum parallelism holds between the reference and object wavelets.

Quantum parallelism, according to which any two states of correlated
photons must be considered as taking place simultaneously in quantum
complex linear superposition, irrespective of how far from one another they
might be, is a consequence of the Einstein-Podolsky-Rosen (EPR) type non-
locality of quantics. It has been verified by sophisticated and highly accurate
laser experiments, the results of all of which are in excellent agreement
with the quantum theoretical predictions [8, 10, 9, 11, 12]. The quantum
interference pattern has been observed even when the time interval between
the arrivals of individual photons was around 30,000 times longer than the
time for an individual photon to pass through the linear Mach-Zehnder
interferometer [135, 1391. Therefore, in the context of quantum holography
the parallelism of firing neurons (cf. [123]) located at different columns of the
visual cortex, which has been recently observed at the Max Planck Institute
for Brain Research in Frankfurt am Main, is highly remarkable.

A second application is the computation of hologratings of Dammann
type [82, 185] which are based on planar fabrication techniques, such as
photolithography and reactive ion etching [189], now standard in VLSI elec-
tronic technology. They act as multi-beam splitting DOE components in the
AT&T Bell Laboratories' looped digital optical pipeline processor.

A third important consequence is the Parseval-Plancherel type pixel
identity

Y-H, ( L',. I. .'H (w; p, ')= - I H1(4, ( p;•L•, ýL')1

(4.u W) E •.,+Z. (4. W•') E Z,+Z .

which holds for all complex-valued writing wavelet packet amplitude densi-
ties * (t)dt, (p (t)dt in the space 8(91). If the Hermite-Gaussian eigenfunctions
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Hm and Hn (m )> n >, 0) are inserted for V4 and (p, respectively, the radial
symmetry of the terms of the left-hand side implies by a trace argument the
following result [156, 157, 1501.

Figure 11.1

Theorem 11.4. The non-oriented lattices of two-dimensional pixel arrays
in the symplectic hologram plane 971 + 9q have the crystallographic dihedral
groups Dk, (k E 1, 1,2,3,4,6,1) of order 2k as their groups of symmetry.

An application of the representations of linear Fraunhofer type of G
yields the following

Corollary 11.5. The diffraction patterns of the non-oriented lattices located
in the hologram plane are the reciprocal lattices.

Snowflake fractals, i.e., self-similar planar von Koch curves admit-
ting locally the symmetry groups Dk lk E 11,2,3,4,61) are called holo-
graphic fractals or holofractals, for short. The validity of the preceding
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Figure 11.2

results can be experimentally demonstrated by means of optical holofrac-
tals readout by the representations of G of linear Fraunhofer type [150, 183,
1821. For the case k = 3 of triadic holofractals having Hausforff dimension
log 4/ log 3 = 1.2619 .... a line segment of unit length serves as the initiator
and an equilateral triangle becomes the generator; see Figures 11.1, 11.2, and
11.3. Readout of randomly distorted holofractals by the representations of
G of linear Fraunhofer type generates radial speckle patterns [171, 172].

An application of the Weil-Zak isomorphism w, to the readout for-
mulae of the Corollary to Theorem 7.1 supra shows that the scanout of the
two-dimensional pixel arrays of the holographic lattices (or hololattices, for
short) may be performed by a time-multiplexing procedure.

Remark 11.6. It is a highly remarkable observation of neurophysiology
that the presynaptic vesicular grids of the mammalian brain are hexago-
nal hololattices. The thickness of the presynaptic membrane by which the
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Figure 11.3

synaptic vesicles emit their specific neurotransmitter substances is about
500317 whereas the uncertainty of the position of a synaptic vesicle due to
the Heisenberg Uncertainty Principle is about 500317 per millisecond [42,
361. Of course, this observation and its consequences are also interesting
from the philosophical point of view [43, 197].

Remark 11.7. The hololattices are at the basis of the detour phase method
[158, 163] of writing digital CGHs of sampled images by use of the fast
Fourier transform (FFT) algorithm. The height and the displacement of a
single aperture centered at the sampling points of the hololattice are used to
encode the complex-valued wavelet packet amplitude density including the
phase of the wavefront. Thus the actual encoding of detour phase CGHs is
performed without the explicit use of a reference wavelet. The hololattice
corresponding to the crystallographic group D6 of twelvefold symmetry
offers substantial computational efficiency and a significant reduction of
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required data storage compared with rectangular sampling: the hexagonal
FFT is 25% more efficient than the most efficient rectangular FFT algorithm.
The scanout of the wavefront is achieved when the CGH is illuminated with
a plane wave and focused with a Fourier-transforming lens.

Remark 11.8. Compact disks (CDs) may be regarded as one-dimensional
digital CGHs that may be scanned out by the holographic optical read-head
of a CD digital audio player. The scanning laser beam which is focused
on the surface of the CD is focused on its return path on a quadrant de-
tector located near the laser diode chip. The detector converts the arrays
of minute optical holograms which are coherently encoded by mixing the
scanning beam with the beam scattered by the pits into a sequence of elec-
tric pulses. Thus the massive amount of information arising by scanning
the simple interference patterns of pits and lands has to be serially pumped
off the symplectic hologram plane 91 B 9R and then fed into the bit-stream
chip or the multi stage noise shaping (MASH) IC of the CD player's micro-
electronic circuitry. It is the focal plane of the collimating lens which forms
the optoelectronic von Neumann bottleneck of the hybrid device. Erasable
magneto-optic technology uses laser light both to record and to read data.
A blank disk has all its magnetic domains oriented north-pole-down. To
record information, a burst of a few nanoseconds of high-intensity light
from an infrared laser heats a spot about I ýim across in one magnetic layer
of the disk. The coercive force required to change the magnetic orientation
of all the domains in the spot from north-pole-down to north-pole-up falls
to almost zero as the temperature of the spot increases to 150°C, and the
bias magnetic field created by a coil flips the magnetic field. The data are
read by a lower-powered beam from the same laser, whose polarization de-
pends, by the Kerr magneto-optic effect on whether the magnetic orientation
of the spot is north-pole-up or north-pole-down. Optoelectronic ICs in the
magneto-optic write-read-head senses the polarization, and the magnetic
orientation is interpreted as a digital 1 or 0. The magneto-optic switching
technology suggests to consider the spin variables of an erasable CD as a
one-dimensional artificial neural network.

The single most important principle in the analysis of electrical circuits
is the principle of linear superposition. For an arbitrary network con-
taining resistors and voltage sources, we can find the solution for the
network (the voltage at every node and the current through every resis-
tor) by the following procedure. We find the solution for the network
in response to each voltage source individually, with all other voltage
sources reduced to zero. The full solution, including the effects of all
voltage sources, is just the sum of the solutions for the individual voltage
sources. In addition to linearity of the component characteristics, there
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must bea well-defined reference value for voltages (ground), to which all
node potentials revert when all sources are reduced to zero. This prin-
ciple applies to circuits containing current sources as well as to those
containing voltage sources. It applies even if the sources are functions
of time. It also applies to circuits containing capacitors, provided that
any initial charge on a capacitor is treated as though it were a voltage
source in series with the capacitor.

Carver A. Mead (1989)

12. Amacronics: the processing electronics layer

Recall from the theory of electrical networks that a simple closed path in the
plane 91 fi•91 is called a mesh. A mesh is called hexagonal if it has the dihedral
group D6 as its symmetry group (see Theorem 11.4 supra). Let us assume
that the processing electronics layer is implemented by a linear network of
local resistive circuits and that the voltage is constant around the perimeter
of each concentric hexagonal mesh about the driven node. Consider the ntth
concentric hexagonal mesh where all of its 6n nodes have the same voltage
V,. On its perimeter there are 6 vertices, and the remaining 6(ri- 1) nodes lie
along the edges. Each of the 6 vertex nodes makes 3 outside interconnections,
while each of the 6(n- 1) edge nodes makes 2 outside interconnections. Thus
the nth hexagonal mesh connects to the (n + 1 )st concentric hexagonal mesh
through (1 2n 4- 6) parallel resistors. Each of the resistors has resistance R and
conductance Ro1. Therefore the impedance connecting the rtth mesh to the
(n+ 1 )th concentric mesh is R/(12rn+6). Similarly the impedance connecting
the ntth mesh to the (nt - 1 )st concentric mesh is R/(12n - 6). Along the rnth
mesh there are 6rn conductances to ground, making a net admittance to
ground of 6nRo 1 . According to Kirchhoff's current law, the current flowing
into the rnth mesh from its neighbours balances with the current flowing out
of the nth mesh to ground. It follows the forward recursion

Vyi # - Vn + VnI - Vn n O' ,, ( >U

R/(12n +6) R/(12n-6) =6rRg'Vn (it > 1).

Introducing the parameter a = RRo 1, Kirchhoff's current law takes the more
convenient form [51, 1151

(2n + l)V, i - n(o + 4)V, + (2n.- 1)V,_1 = 0 (nt> 1).

It describes the voltage on a given hexagonal mesh in terms of the voltages
on the two smaller concentric hexagonal meshes. For any number w E CT the
identity

Y (wn (2rt + I)V,, 1 -wni(4 + a)Vn + W(2n - I)V,, 1) = 0
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follows. For the power series G(w) = w', the relations

y- w" V.+I = G(w) -wV 1 ,

T wn- VT-i = G(wv) + Vo

yield the inhomogeneous linear differential equation of the first order

w + + - w-- G=V, -wV 0 .

The linearity of the ordinary differential equations reflects the linearity of
the network. Decompose the quadratic factor

"- _(2 + = (w+ - rW)( - r_)

into linear factors. Then the voltage of the first hexagonal mesh takes the form

V I E(r2- rfV

in terms of the voltage Vo at the center of the network and the complete
elliptic integrals of the first and second kind E(r2 ) and K(r2 ), respectively,
evaluated at the parameter value r2 

. The arithmetic-geometric mean algo-
rithm presents an efficient tool to compute V, in terms of Vo and then to
apply the forward recursion to compute all the voltages V, (nt ? 1).

Although a cell's response function is in general nonlinear, visual neu-
rophysiologists have found that for many cells, a linear summtnation
approximation is appropriate.

Ralph Linsker (1988)

13. Gabor wavelets attached to a hololattice

In biological vision, the center-surround receptive field profiles of the retinal
neurons [35, 37, 38, 39, 41, 111] and the cells of the lateral geniculate nucleus
are far from forming an orthogonal family in L2 (91 9t). Therefore the re-
sulting neural representation remains highly correlated. Theorem 7.1 supra
suggests to implement a matching filter bank by an adaptive artificial neural
network model which is based for (y, g') e 9R p, 9q on the central projection
and backprojection G-slice orbits

S(x,x') - (U1 (x, y,O) . U y(x', ,O)(Ho . Ho))(It, pi')
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((v, p/) E Z .:. Z), of the Gaussia'- mode Ho-l Ho in L2 (q .;. 91). The irre-
ducibility of the linear Schr6dinger representation U I of G combined with
the Weil-Zak isomorphism w, implies:

Theorem 13.1. The approximating family of Gabor wavelets

{G Z' .' _ . (Y' N }9

attached to the hololattice Z . Z inside the symplectic hologram plane 9R IN
is total in the complex Hilbert space L2 (9M . 9N).

Notice that the Gabor wavelets form a non-orthogonal family in the
Hilbert space L2 (j•1 - 93). L2 expansions in terms of Gabor wavelets of-
fer high code compression rates appropriate for image processing purposcs
[37]. Early stages of biological visual systems pay for keeping M rn = 0
by the non-orthogonality of the center-surreund receptive field profiles. The
family of Gabor wavelets give excellent tits in the chi-squared statistical
sense to the correlating simple cell field profiles empirically studied in the
cat striate cortex [85, 84, 1111. The retina [41], an outpost of the central
nervous system, and the lateral geniculate nucleus, however, act as decorre-
lators of the incoming signals. At the level of the mammalian visual cortex,
the introduction of orientation selectivity through localized wave modula-
tion combined with quadrature phase relations among paired cells results
in a decorrelated neural representation ,%ith optimal image compression
performance by the Hilbert basis of I 2(N . N) of elementary holograms

Fl (I H .. ,,: .,. ,, . .. Signal preprocessing and processing in the au-
ditory parts of the cortex follow similar bask lines.

I saw min first ;olorain at t the OCtario .cioict Cet'tri hi Catadauf aud
hav c t1n obl',('sed woithh hohttraphi, tzcr i; cc.

Sunny B, ins (19S"/)

Thte rcsohutioin can intecd be' zery woSod, since t/il cfc t t vc ap 'ri hr' fir
thic systein is tiit tift, aperture of thic object -bearing syst cn hit i': ite, ad
thef erturc of the other branch of the interferometer

Emmett N. I,eith (1986)

14. Optical display holograms and superresolution Imaging

Optical phase conjugation by degenerate four-waveiet-mixing requires a
coherent light source. Due to the degrading effects of coherent artifact
noise which results from the quantum stationary interference between the
light scattered by imperfections in the optical path and the unscattered light
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representing the optical signal, a considerable amount of research interest
has been directed towards the use of partially coherent illumination.

In case of a spatially incoherent light source, the coherent holographic
transform as defined above has to be modified. The canonical differential
2-form on G/CG has to be replaced by

cv., = -v, dx A dy (v $ O)

inherited from the symplectic form coc, of the coadjoint orbit (9, in the
real dual of the Heisenberg Lie algebra. For different center frequencies
-v :P 0, v' ýt 0, the symplectic affine planes (0(, w,), (0,,, w,,,) are different.
Therefore the associated irreducible unitary linear representations U.,, U,,
of G are non-isomorphic. Consequently the orthogonality relations

(H,, (*, w; ., .) IH,,, (i$', Wo'; ., .)) = 0 (-v 4 -N')

hold on the symplectic plane 91 -91 for 0,p, o',p p' in 8(91). Instead of the
coherent holographic transform, the transform defined by quantum complex
linear superposition of the mapping

0 (t') dt' .w o(t)d t "- H (4, w; x, g-dx Ad y

has to be considered. The form coefficient

H( Wo;x,y)= -v. -H,,(,p:x, )d-v

is performed by integrating over the spatial frequencies -v emitted by the
light source.

Fu 1

Figure 14.1
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As a first application of the preceding identity, the various kinds of
optical display holograms should be mentioned. A combination of the dis-
cretized frequency scale (-v scale dual to the z coordinate axis) with the Bragg
frequency selection law for the generated diffractive planar multilayers ex-
plains the volume holograms (A la Denisyuk), the rainbow holograms (A
la Benton), the multiplex holograms (A la Cross), and the waveguide holo-
grams (A la Caulfield); see Figure 14.1 for the cone of Bragg angles associated
to the multilayered dual manifold of G. The holographic angle decoding
procedure can be restated in the following form:

Theorem 14.1. The choice of the hologram plane as a Kirillov orbit -v 3 0
within the multilayered unitary dual manifold of the Heisenberg nilpotent
Lie group G is performed by the Bragg frequency selection law.

Corollary 14.2. The coordinates of a page oriented holographic memory
are given by the coordinates (x,y) E 9R ,. 91 of the hologram plane and the
reference beam angle to dx A dy.

Since the slit device in processing Benton holograms defines the axis
directions of the coordinate system in the hologram plane 91 -9%, a movement
of the illuminating white light source changes the rainbow colours of the
optical display hologram.

One of the most common defects in optical display holograms is blur-
ring of the image. It is important to appreciate the fundamental difference
between optical holography and photography in this respect. A photograph
as a two-dimensional recording of an image formed by a lens can be blurred
from the start; the sharpness of the image is not affected by the light source
used to illuminate it. The situation, however, is completely reversed for an
optical hologram, which is a recording of a stationary quantum interference
pattern, not an image. If the interference pattern is blurred at recording,
only the brightness of the replay is affected, not the sharpness of the image.
The sharpness of the image depends on the direction of the light wavelet
packet amplitude densities diffracted by the hologram, which is determined
by the spatial frequency of the recorded interference pattern, and also by the
direction, size and wavelength of the readout source. In fact it is not possible
to record an optical hologram of a blurred object. If any optical hologram
is illuminated with an ideal light source, i.e., a point source at the correct
wavelength, angle and distance, then the image will be pin sharp, no matter
how it was recorded.

The conclusion that if an optical hologram is read out with a point
monochromatic source, then the image would not be blurred at all, is only
true if the observer does not look beyond the resolution of the human eye.
The eye has only a very small aperture and intercepts only a very small cone
of rays from the hologram at any time. If the image in an optical hologram
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is inspected with larger aperture optics, or if a real image is projected on a
screen, the observer will start to see blurring due to the geometric distortion
of the light wavelets emanating from each image point. This arises if the
replay wavelength is different from the recording wavelength which for a
white-light reflection hologram means any change in layer thickness or re-
fractive index, or if the replay angle is not exactly equal to the recording angle,
or if a real-image hologram is replayed with an inexact conjugate beam.

Another application of the preceding identity is the superresolution
imaging technique [30, 31, 97, 98, 99, 100]. The superresolution effect is
achieved by incoherent to coherent conversion. In this procedure the aper-
ture of the imaging system is reduced and the aperture reduction is compen-
sated by reducing the spatial coherence of the light source. In view of the
quantum parallelism, a reduced aperture like a pinhole spatial filter can be
inserted also in the reference wavelet channel of the interferometer without
limiting the effective resolution of the two-parallel-channel optical imaging
system. In the readout step, the stationary quantum interference pattern
generated in the symplectic hologram plane !R : .!' can be decoded as an
optical hologram by using an expanded laser beam.

Neural network models offer a dalta-driven unsupervised computational
approach which is conlplehr'entariy to the algorithin-driven approaches of
traditional inforrmation processing and artificial intelligence. The tfin
granularity, massive interconnectivity, and high degree of parallelism
set neutral network models apart from traditional electronic serial coin-
puting. These sa le featires are the hallnarks of optical coniputing
architectures which haze hld manyi, workers to conside'r optical imple-
mnentations of neural nettwork models.

Bernard H. Soffer (1988)

The resonator numinory and novelty filter muiist bh considered as proto-
tiypes, not merely because they are rather primitive In/ neural network
model standards but alh;o because their relationship to ant,' existing neu-
ral model has yet to be properhi established; in several zayits, the relation-
ship' is a distant one, ait best. Many of the features of these devices are
nevertheless strikinuihl reminiscent of newrl i models. In the resonator
muemoryi,, for examnphe, it is appropmriate to use tit, terni "comnpetition " as
it is used in some neu ral models

Dana Z. Anderson and
Marie C. Erie (1987)

15. The Softer optical resonator

In order to identify explicitly the terms of the Parseval-Plancherel type pixel
identity indicated above, we denote by K,,,,n the complete bichromatic graph
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of m+rvertices. Define c(K ,.,., 0) := 1 and let c(Km,,,, L) denote the number
of choices of I >, 1 disjoint edges in Km,, each linking two vertices of different
colours. Then

0 m.n(X) : j (--)tc(Km.,n, tX,+n-2t
0O<_ t (m + n)1/22

denotes the matching polynomial [47, 60, 77, 1621 of variable X associated
to the bipartite graph K,,,n. For any number w E T the radial evaluation of
0 1,,,,T(X) at w is defined by the rule

cbmn(w) := T (-1I c(Kn.n, t)wm+' (wW)-.
o < L < I O(n f-n) /2

Theorem 15.1. The coefficients of the matching polynomial Prn,n (X) are the
elementary synaptic strengths (-1) tc(Km.n, 1), 0 •< t <, [(m + n)/2], where
the matching coefficients c(K,,,,I, ) denote the number of disjoint synaptic
interconnects of the local neural network K,,n, (m >, r >n 0) activated by
coherently firing neurons.

Example 15.2. In the case i= rT = 3 the matching coefficients

c(K 3 ,3 ,0) = 1

c(K 3 •3 , 1) = 9

c(K 3 ,3 ,2) = 18

c(K 3 ,3 ,3) =6

arise. Thus the matching polynomial of the Thomsen graph K3 .3 is given by

4)3,.3 (X) = X6 -9 X4 + 18 X2 - 6.

Notice that the local network K 1,3 forms a non-planar graph.

In terms of Laguerre polynomials of order m - n > 0 and degree n > 0,
it follows explicitly [77, 1621

4.,,(X) = (-I1)nfn.!X"Lr n(X 2 ) (Mi > n > 0).

By radial evaluation of the matching polynomials (I>ll (X) defined above,
the next theorem describes the relationship between the elementary holo-
grams and the matching polynomials attenuated by the Gaussian (H0 oHo) E
L2 (91 ',i 9q) with distance: the farther away an input is from a point in the

neural network, the less synaptic strength it is given.
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Theorem 15.3. Let mr >n r.>, 0. Then the elementary holograms admit the
form of radially evaluated quasipolynomials

(-1) e-n7r~x24 Y)/2q), (nV/-fix ± iij))
HI(H" Hm, H;x,)= (-I"e'x.i

for all pairs (xW) E 91 F, 91.

Example 15.4. According to the Corollary to Theorem 7.1 supra, scaled ver-
sions of the elementary hologram Hi (H0 ;.,). = HO, ZHo can be implemented
as diffraction HOEs (cf. Remark 4.5 supra) for the fundamental transverse
mode of a coherent laser light beam. This implementation is performed
with a CAD station by projecting layers of constant optical thickness of
the rotationally symmetric Gaussian diffraction profile onto the symplectic
hologram plane 91 i 9q. In contrast to the Advanced Systems Analysis Pack-
age (ASAP) software procedure, however, the diffraction CGH is based on
a quantum holographic description of the diffraction profile and therefore
adapted to the purposes of amacronic sensor technology.

Corollary 15.5. By quantum complex linear superposition, the symplectic
hologram plane 91 -. 9q can be realized as a neural plane of local neural
networks.

In particular the quantum holographic approach to neural networks
yields the following result:

Theorem 15.6. The intrinsic holographic interconnection patterns are deter-
mined by the representations of linear Schr6dinger type whereas the extrin-
sic holographic interconnects are determined by the representations of linear
Fraunhofer type of the Heisenberg nilpotent Lie group G.

Simulations of the synaptic strength patterns by conventional large-
scale digital computers show that the self-organization of excited neural
networks results in a cluster pattern of the neurons [1321; see Figure 15.1.
The American artist Jackson Pollock has been motivated by excited neural
networks to create his drip paintings (cf. Figure 15.2). Notice that the holo-
graphic theory of associative memory also leads to according prime place
to the neuroglial cells rather than modifiable synaptic strengths in planar
configurations of neurons (123].

Presently one of the most successful implementations of the symplectic
hologram plane 91 f, 91 as a neural plane is the Soffer optical resonator built at
the Hughes Research Laboratories [126, 127, 129, 128, 169, 1701. The optical
neurocomputer is formed by a coherent optical resonator cavity consisting
of an optical hologram placed between two degenerate four-wavelet-mixing



{ 44. Quantum holography and neurocomputer architectures }

Figure 15.1
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wavefront conjugate mirrors (PCMs). One of the wavefront conjugate mir-
rors is sesquilinear [30, 31, 49, 501 while the other one amplifies higher
amplitude density signals more than lower amplitude density signals (see
Theorem 7.1 supra). The optical hologram has multiple "example" images
stored in it.

The neurocomputer is configured so that each example image is holo-
graphically encoded using a reference laser beam that impinges on the sym-
plectic hologram plane 91 t 9R at a slightly different angle than the reference
beams utilized for the other example patterns. After the neural system has
been prepared, one can enter any image into the cavity by impinging it onto
the optical hologram. The net result is that the holographically encoded
image causes partial reconstruction of the reference beams. The complex-
valued wavelet packet amplitude density of each reconstructed reference
beam is proportional to the L2 distance between the entered image and the
example image associated with the reference. As the reference beams re-
verberate through the cavity the strongest (highest complex-valued wavelet
packet amplitude density in the L2 sense) one is incrementally amplified and
the others are incrementally attenuated so that before long only the reference
beam corresponding to the best matching example is left. In other terms,
the stored image with the smallest distance to the input pattern survives in
the mode competition at the expense of the more distant images. At the
output port, i.e., the reconstructed real image port of the optical hologram,
the best L2 fitting example pattern then appears. Thus the optical neurocom-
puter functions as a nearest neighbour classifier for holographic imagery by
recalling through a competitive memory.

The Soffer optical resonator can be viewed as an infinite-dimensional
version of the Hopfield network. Or alternatively, if une envisions the op-
tical elements of the neural system as consisting of small discrete optical
units, then the Soffer optical resonator can be thought of as simply a large
Hopfield network.

The second generation of Soffer optical resonators is based on a self-
pumped wavefront conjugate mirror (SP-PCM) in conjunction with a SLM,
CCD detector, frame grabber, and host computer [170]. Similar optical neu-
rocomputers have also been recently built at the Department of Electrical
Engineering of Caltech [145, 144, 143, 1461 and the Joint Institute for Lab-
oratory Astrophysics (JILA) of the University of Colorado [2, 3, 4, 5, 71.
These neural systems have also successfully demonstrated recording multi-
ple patterns and functioning as a nearest neighbor associative memory. The
day-dreaming phenomenon observed in a ring resonator memory reveals
the quantum fluctuation as a consequence of the Heisenberg Uncertainty
Principle (cf. Section 5 supra).
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Mathematical models of neural networks are having a profound in-
fluence on current research in optical computing. This trend toward
neural computing is motivated by the sophisticated control and infor-
mation processing that occurs in biological systems. The basic model for
a neural network is a large number of simple processing units (i.e., neu-
rons) interacting with one another through weighted interconnections
(i.e., synapses). A neural network is the finest grain parallel computer
possible where information and program are stored in the weighted in-
terconnections and the processors perform simple thresholding logic. It
is this highly parallel nature that gives neural networks their computa-
tional power and makes them attractivefor optical implementation.

H. John Caulfield (1989)

My interest is, to paraphrase a famous statement, not what mathematics
can do for physics, but what physics can do for mathematics. That is
my underlying motive.

Stanislaw M. Ulain (1986)

16. Artificial neural network identities

Theorem 15.3 supra implies the shift register identity (mn > Ti >_ 0)

HI (H,,,, H,• -,; (6' 1 (,5, (•Z, OIv', l' (H,,,)wl, (H,,))

_ (-1) + iii'))

for all points (p, p1') of the quadratic hololattice Z -:, Z. In particular, the
following result obtains:

Theorem 16.1. For m _ n Ž> 0 the identity

(a t') E ',

Sy " e- I" V/:11• (.. ýL•( + i ý'))l

holds for the quadratic hololattice Z - iZ of Gaussian integers inside the
symplectic hologram plane 91 R 9.

The preceding theorem gives rise to the following special identities for
the odd powers of 7r in terms of theta-null values 0(0, 1) = te-'T"4 [155, 154,
162] where
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PEZ.

• -- I,nr --O:

7[111 = 0:

414t 2 e-_7
2

m = 2, n = 1:

71.3 = 1

32F j6e-- 2

rr = 3, ni = 2:

n5 45Y(167r4p 8 - 1407r2p 4 + 21)e-""'
64Y 1lO e-74"

in = 4, nt = 3:

7 91E numerator e
1024Et' 4

where

numerator = 2567r 6 it2 - 158407t 4.,8 + 1663207r2 44 - 25245.

Theorem 16.1 supra shows that the preceding identities for the theta-
null values 0(0, 1) are of a combinatorial character.

Remark 16.2. The cardinal sine mother wavelet sinc mentioned in Exam-
ple 6.4 supra, i.e., the univariate impulse response of the ideal lowpass filter,
admits the Euler factorization

sinc x= n -(2 ~ )
nŽ>l

Its logarithmic derivative yields the identity

(1 2 L4 n67xcotan rx=!--2x2 L(-- J-/+i-•+.-•+''")

A comparison with the generating function of the Bernoulli polynomials
Bn(X) of degree nt > 0

w e lx I B 1
n - I --_'O
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evaluated at X = 0 and w = 27rix yields the classical Euler formulae for the
even powers of 7T:

,-2 • = -)n j I 2(2n.)! < 2 . r / )

22n•B2r

where C denotes the Riemann zeta-function and B2, = B2,(0) are the
Bernoulli numbers. In particular we get the special cases:

T = 1: 72 = 6C{2)
Ti = 2: 7r4 = 90C(4)
nr = 3: 7-6 = 9454(6)
n = 4: n'8 = 9450W(8)

The first identity belongs to the nicest formulae established by Leon-
hard Euler. It has been explicitly reproduced in the Encyclopedia Britannica
(1963).

Hardly a week goes by without an article appearing on the front page of
a national mnagazine or journal trumpeting yet another breakthrough in
optical computing.

Lauren P. Silvernail (1990)

Our abilitiy to realize simple neural functions is strictliy limited by our
understanding of their orlganizing principles, and not b.y1 difficulties in
implementation.

Carver A. Mead (1989)

17. Synopsis

The computation of real world phenomena in real time requires computa-
tional power that exceeds by many orders of magnitude the capabilities of
sequential digital computers presently available. Although the data transfer
rate of biological neural networks is merely a few kilocycles, hence not very
fast, biological wetware is able to solve tasks such as real-time pattern recog-
nition or sound localization because it operates in analog mode which allows
simultaneous summing of many inputs from interconnected units and per-
mits massively parallel data processing without the need for iterative proce-
dures. Extrapolation from simulations of simple neural circuits indicate that
a sequential digital computer would have to operate at speeds of more than
1018 floating point operations per second in order to match the performance
limit of the human brain. The implementation of artificial neural network
models based on coherent optical processors and analog electronic circuits of
neurons and synapses is currently being pursued in a number of laboratories
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where several special purpose neurocomputer systems have been fabricated
in holographic, optoelectronic, or CMOS VLSI electronic components. In the
quantized theory of the electromagnetic field the bosons present in a coher-
ent light beam travelling in a well-defined direction are the optical photons.
The Kirillov quantization approach to the theory of the sesquilinear holo-
graphic transform * (t')dt' ® o{(t)dt -)- H I(*, y4; x, j) - dx A dy as outlined
in this paper implies a link between elementary holograms and artificial
neural networks. It allows to rigorously establish the quantum parallelism
as a EPR-type phenomenon (Theorem 11.3 supra) and to recognize the sym-
plectic hologram plane 91 1) 9R as a neural plane (Corollary to Theorem 15.3
supra). It is the quantum theoretical base of the holographic transform
*(t')dt' 0 W(t)dt " HlI (*,, (p;x,y) • dx A dy which allows to model three-
dimensional planar optics [81, 891 by the unitary dual of the Heisenberg
nilpotent Lie group G and to establish the universal validity of the quan-
tum holographic concept from amacronic sensor technology to classical SAR
image processing.

Wer spricht von Siegen. Uberstehen ist alles.
Rainer Maria Rilke (1875-1926)
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a A procedure is introduced for incorporating into image processing methi-
ods a priori 3-dimensional geometrical inlformation abou~t -shapes of object.,
of interest. The information is buiilt in bY way of probability mea'ýur('s
onl deformations of a polyhedral 'template" in order to understand t hc
regularitv of thle resulting deformations, one( needs a theorY about the COT)
tinnumlil which consists of probability' measures onl analogous deformation,,
of a smooth compact 2-dimensiona) manifold template. The theory`. 3ý con1-
structed via Gaussian measures onl an enlargement of the s"pace' of triplet,
ot exact one-forms of NJ, such that with probabilitY 1 the deformationsý are
continous iand have additional regularityý [liFe triplets can he' xiewt'd J1 d
"generalized differential map."

1. Introduction

One would like to be able to incorporate a priori 34) geometrical information
into current image processing methods. For example, can one build Into the,
taking of chest X-rays information concerning thle shaI~pe Of human111 lun11"s Or
into angiography the shape of arteries so that the various calcida tions which
are tvpically made, and whiich are geometrical In nature (e~g., curvatures,
diameter of certain cross section,., enclosed volume, surface area1, etcI ,1,1ca
be automated and made less. subjective?

In [2, 3, 11, the approach taken to minorpora te geometricalI informationl
is that of a detOrniable template, where the templat(c is an Iideali/d proto-
type ol the object of in~terest; for example, in the above, tht-e would be? lung,
and artery templates- The parameter space is viewed as having been c reated
by the application of deformations to the templateC, very muILch In the spirit
of having been swept out by' a structure group. A prior probabihlt measu1,Lre'

'i iu ported by ( tifj c' ot N.,ivai Ri'iardi ,( ontrhiN NOW \ 10 4-q(l~j 1 100

J .S Bqvr,,e i ef-, e.s. i, PredJi/n/wn,, and Si", /.i .ili'r 14 ,01"'A mi Ina/iq ' I t Asus~ phi atio, ' 19-
t 992I Klui.cr Aradensit Puhhs ius'r Printed ms 55,,'\s'er~mn~i.



Keenan 470

is then placed on such a space of deformations to describe the variations in

form. The data is incorporated via a likelihood which describes the technol-

ogy by which the images were acquired. The goal is the construction and
justification of an algorithm for generating realizations from the posterior
measure. When the template is a surface (in !N3) the realizations from the
prior and posterior measures are "random surfaces."

In the above referenced works the templates were always polygons and
polyhedra. In the present paper a model in the continuum is discussed; the
necessity for such a construction is the result of such practical considerations
as how to choose parameter values for the prior measure in order to obtain
the desired regularity of the deformations.

What properties are important for an appropriate general formulation
of deformations to a template? It seems quite reasonable to think of there
first being a global similarity or affine transformation of the template which
captures the location, orientation, and overall size, followed by local trans-
formations which capture local structure. If M is the template and ff -';

are the deformations, then the parameter space is:

e = {f(M), f c- (1.1

Ideally, one would like to have the parameter space characterized once one
has specified the template M and several known functions defined on the
tew"vlate which would describe the allowable local variability/regularity
mix; for example, these functions might specify that in certain regions of

the template there will be little variability (i.e., the template is rather rigid
there), whereas in other regions there might be much variability. Also, it is
most important that the characterization of the deformations of the template
be constructive in the sense that an operational procedure for actually con-
structing such deformations is available, as opposed to merely specifying an
equivalence relationship; this is important from an algorithmic point of view.

In Section 2 a discrete (polyhedral) model is briefly described with
the need for a theory in the continuum being suggested. In Section 3 a
continuous theory is outlined, the full details being given in [5). In the
continuous model the template is a 2-dimensional submanifold M of 9!N and
the above functions describing the variability/regularity mix (by which the
deformations are created) are the cc 1(icient functions of a second-order self-
adjoint elliptic operator F on the one-forms of M. From C is constructed an
operator I on an enlargement of the space of exact one-forms. In this paper
L will be the Laplace-Beltrami operator on one forms. Triplets from this
enlarged space can be thought of as identifying a "generalized differential

map" from which the deformations atn obtained by "integration"; in order
to control the resulting geometry of the dP'`rined template one must work at
least at the differential level.
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2. Polyhedral model

In the case of a polyhedral template the resulting geometry of the deformed
polyhedral template is more naturally controlled by deforming edges rather
than vertices. Heuristically speaking, the deformations will be constructed
by first constructing their "differential maps." If P is a polyhedral template
and {vi ..... v,} and {el_.. e,} are, respectively, the vertices and edges of
P, let matrices (S1. .. S,) E [GL(3;9i)]' be "placed" on the rn edges (Si
on edge Q), vertex v, held fixed (for the moment). The matrices should be
thought of as being "close" to the identity:

Si = I + (Si - 1). (2.1)

The S's are the discrete analogue of the differential map and the deformation
f resulting from (Si,..., S,) being defined as: v E {vl ..... V"1

k k

f(vM = v, + 5- Si, ei, = v + -(Sil - I)ei, (2.2)

where Ie, ...... elj is a path from v, to v. In order for this to make sense f(v)
must be independent of the path taken from v, to v. The independence of
the path corresponds to the linear closure constraints imposed by the fixed
edges of the polyhedral template. The parameter space in the polyhedral
case is:

0,, = (f(P) I f created by (2.2), (Si,..... S,) E [GL(3)1",

with path independence, (2.3)

If the matrices Si, i = 1 ... , n were all the same matrix then we would
be in the setting of the traditional geometries (Euclidean, Similarity, Affine
groups); that is, 0,, would be the orbit of figures equivalent (in the geometry)
to the template. One only moves away from these traditional definitions
of equivalence by allowing the matrices to be different on different edges.
Loosely speaking, we will characterize shapes via invariants not ordinarily
obtained by traditional geometries by judiciously "lumping" together orbits
under traditional geometries.

Consider the following (simple) Gauss-Markov measure defined on
IGL(3)I" via the density:

p(s .... s,,( -x

expý -2 Is , lI2 2p(s - I, si, -- 1) + Is1 - lls, (2.4)

where the product is over all neighboring edges in the edge graph associated
with the polyhedral template. There are just two parameters, p and C. More
precisely, we have a matrix-valued Gauss-Markov Random Field defined on
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the edge graph associated with the polyhedral template. On closer exami-
nation the covariance structure of this measure is seen to be related to the
Green's function for the discrete Laplacian on the edge graph. One must
also condition on the S's, when applied to the fixed edges of the template, of
producing deformed edges which "come back together"; these are the linear
closure constraints which are equivalent to path independence. Condition-
ing the measure in expression (2.4) on these linear constraints, one obtains
another Gaussian measure from which one can induce a measure on OE,; call
it p.. The measure pL, is our prior measure in the polyhedral case.

In practice one doesn't use just one polyhedral template but rather a
sequence of polyhedral templates, allowing one to work at different scales;
this sequence can be thought of as piecewise-flat approximations to a smooth
manifold template M. As the polyhedral template approximations are re-
fined, the covariance structure in expression (2.4) gets closer to (a function
of) the inverse of the discrete Laplacian (on the edge graph) which one
would suspect gets closer to the Green's function for the two-dimensional
Laplacian, which because of its logarithmic singularity is only realizable
as a covariance function on generalized functions. In our case the above
covariance structure is for a measure on the "differential map" and not on
the deformation itself, which would be obtained by an "integration." An
important question is whether or not, in the continuum, the analogue of f(-I
in expression (2.2) with the analogue of the above probability measure "M,,
produces continuous deformations with probability one. This question is
important because if one is to work at different scales it is crucial to know
whether chaotic behaviour at a fine scale is due to an improper choice of
parameters or to an inadequate theory (such as a certain probability mea-
sure only being realizable on generalized functions). In Section 3 it is shown
that, in the continuum, the deformations are continuous (and more) with
probability one.

What should be the analogue of the above discrete model in the contin-
uum? If one thinks of the three rows of the matrices (Si - I), i = 1, 2 ... ., in
expression (2.1) as discrete versions of one-forms, then in expression (2.2 1,
f(-) is created by "integrating" three one-forms over the path c,.
from v, to v. The independence of the paths, which corresponds to the
imposition of the linear closure constraints, is the discrete analogue of the
one-forms being exact.

Consequently, a reasonable generalization of (2.1 -(2.4) would start
with a smooth, compact, connected, oriented 2-dim submanifold M of N'

as template with B1 (M) being the exact one-forms of M. The matrices
(Si ... SO), Si = I +- (Si - I), i = 1 ... , n, the discrete analogue of a
differential map, would be replaced by (I + (0(,02, 0)),0i E BU(M), I I,
2, 3. For cxi ý- BU(M), i = 1, 2, 3, and p,, (fixed) c M, define fi.) associated
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with (L cI,02, C3) as: p E M

f(p) = p + (fympo.4p cix•(y'(s)) ds, i = 1,2,3) (2.51

where y is a path from po to p in M. The parameter space E is thus:

® = jf(M)I f created by (2.5), cxi E B1 (M), i = 1,2,3,. (2.6)

One would first put a Gaussian measure on the space of one-forms with the
covariance operator being the inverse of the Laplacian on one-forms, this
is the analogue of the measure in expression (2.4). From this one would
create the conditional measure, conditioning on the form being exact; this is
the analogue of conditioning on the closure constraints. Finally, using this
measure, one would induce a measure on the space 0. Unfortunately, such
measures cannot be realized on these spaces but only on "larger" spaces.
In the next section we show that, probabilistically, this is inconsequential to
our goal.

3. Smooth manifold template

Let (M, g) be a smooth, 2-dim compact, connected, oriented submanifold
of 9il where g is the Riemannian metric inherited from the dot product oil
9V3; M is our template. For the results presented in these proceedings the
extrinsic geometry of M will not be exploited. Throughout this section all
structure will be C' unless otherwise specified. Let !Ue",4 V be a finite
atlas on M with a subordinate partition of unity [Uf, he!,Ne . Let A!k(M) be
the k-forms on M, k = 0, 1,2 and denote by f,..,o the inner product:

(oc, f3)-• I o(A .1

where A and are the wedge and Hodge-star operators. The usual L" spaceýk, Cnie h aiyo om
is A(kI(M) completed with respect to . Consider the family of norms
,p ...... , on A-'(M): a ,_ Ak'UM)

N

, = - ( e) •a ,,. (3.1)
t 1

where 4);,, is the induced map from AK'(Ue) to the components of the form
viewed as being defined on 4ýe(Uf) and 1',l,, is the usual Sobolev norm

.I, on D(9V2 ): g ( D(IN2 )

Ilgl - J) )Dgl dx
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applied to the L(k) components of the k form, L(k) = 1 for k = 0 or 2 and
L( 1) = 2 (see [7] or [61). It is shown in [4] that the family of separable Hilber-f (k) 10ýrol ktiannorms 1. o determine the Schwartz topology T on A(Mk) {Mand

that the resulting countably Hilbertian space is nuclear.
Let d(k) and 6 (k) be the exterior derivative and boundary operator on

{Af k) (M), k = 0, 1, 2} and define the Laplace-Beltrami operator as:

A k0 = d(k-l1 6(k) + 6 (k")d (k)
LB -

Let B(k)(M), E(k)(M), and H(k)(M) be respectively the exact, co-exact, and

harmonic k-forms. The operator A (k) is invertible on B (k) E (k) (M) and the
inverse, denoted b. 3(k), can be extended to A(k)(M) (w.r.t. L2 ) by being set
to zero on H(k) (M). Let J(1) be the projection in L2 to the completion in L2

of B' (M).
The full details for the following lemmas and theorem are given in [5].

Lemma 3.1. For the operator L given by
L= Ij G1 }J1

there exists an n >_ 3 such that the seminorm PL H1:

PL(• ) = (o, Lc}xo'0

is the covariance functional for a mean zero Gaussian measure on
(A" 1 (M), p( )' concentrated on (BI 1 (M), p,1nt )', where' denotes dual.

Remark 3.2. The measure in Lemma 3.1 is that obtained by first constructing

a Gaussian measure on (A' (M), p,) with covariance functional PG(cx)
({x, G( 1 x) 41; the existence of p,,1 and the Gaussian measure being the result
of G(1 ) being continuous w.r.t. Tr" and known existence results [4]. The
operator L is shown to be well-defined by using various results from the
Hodge-DeRham Decomposition theory and various properties of G, 6 and d.
The operator L comes about because the condition (I - d&6 1 1 1G6 1 G I ") ( = 0,
cx E A11 1 (M), is equivalent to ax c B 1 (M). The seminorm PL ( is shown to

be Hilbert-Schmidt weaker than p,,ý . In [5] the conditioning is made precise.
The measure in Lemma 3.1 is the "proper" realization of that suggested in
Section 2: first obtain a Gaussian measure whose cova-iance operator is the
inverse of the Laplacian on one forms, then condition on the form being exact.

Lemma 3.3. lf -= TM x B' (M) --1 9 is given by

q(p, Z,,)(ox = a, (Z,,) o E BWM), (p,Z,,) E TM

and if {y(s),O •< s .• tý is a path in M, then the one parameter family

q ,(y(s),y'(s)), 0 C s !ý t; is continuous in (B' (M),pýi '.
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Remark 3.4. Because of the nature of 1q, continuity in the dual space norm
involves (a sup over) comparisons of one forms evaluated at different points
of M; everything has to be parallel transported into the cotangent space at
one point (that where continuity is to be shown, y(s)). A Sobolev imbedding
argument obtains boundedness of derivatives up to m (m /> 3) for the
components in local coordinates of oc, p(. (ox) <_ 1. Using this boundedness,
the continuity of the flow for parallel displacement, and the fact that the
Levi-Civita connection is metric, the result is obtained.

Theorem 3.5. Let Yi, i = 1, 2, 3 be independent Gaussian continuous linear

random functionals from Lemma 3.1, extended to (B I((M), pW•)), the com-
pletion w.r.t. pm

Yi : (BI(M),pR)) -p L2 (0,A,P)

For p E M,y = {y(s),0 •< s •< t, a path from po (fixed) to p, co EC)

f(p, .) def P
f =ppw d p+ Yi(T(y(s),y'(s))(w) ds, i = 1,2,3). (3.2)

Sy :po,-.- p

Then with probability one, f(p, w) does not depend on the chosen path (for
all p) and f(., w) = M -4 913 is continuous. Defining (Tf)(p, w) : TM -

TR 3 as:

(Tf)(p, c)(Z1) =f (f(p, (0), ZI, + (Yi(Ti(p, Z,))(w), i = 1,2,3) (3.3)

then for {.(s),-e < s < e,L(0) = p,L'(0) = Zp

(Tf)(p,.) = lim f(ý.(S), f(L), 1 (3.41

the limit being in L2 (0, A, P) and w.p.1 (Tf) is a linear map for all p E M and

P[fw'vfpj dim{If(p, w)(T,,M)ý -)6 21 = 01 = 1 (3.5)

where -v is the volume element associated with g.

Remark 3.6. We will just give the flavor of the proof of the first part, ex-
pression (3.2); the other parts follow by similar arguments. Because of
Lemma 3.3, the Cauchy-Bochner integral

Jy:pO-P rj(y(s),y'(s)) ds

is a well-defined element of fB' (M), pý)' and for OC E B 1 (M)

(J V J(y~s)y'fsn)ds ) a of JY (y's)) ds
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is independent of the path from p0 to p. The integral in expression (3.2)
is also a well-defined Cauchy-Bochner integral and the linearity of Y (be-
tween Banach spaces) results in the independence of the integral from the
path chosen. Differences of integrals now reduce to integrals over "the
path-difference of paths" which can be chosen to be a minimizing geodesic
segment. Developing various bounds, one can eventually apply (a form of
the) Kolmogorov continuous version theorem from which the continuity of
f(., w) follows. The other parts follow by similar arguments.

In the polyhedral model, there was a polyhedral template T and matri-
ces (S 1 ,..., S,), Si "sitting" on edge i, where Si = I + (Si - I) was designed
to be a discrete analogue of a differential map. In the continuum the idea was
to replace {Si - I, i = 1... n' with a triplet of exact one forms. Expression
(3.3) is the "proper" realization of this, where (I, a2, a•) is replaced by
{(Yi(r1pP,Z,))(wo), i = 1,2,3),p E M! for w c 0. Expression (3.4) shows
that (If), written in suggestive notation, acts (in an L2 sense) much like a dif-
ferential map. The deformations in the polyhedral model, expression (2.2),
involved sums; in the continuum, the idea was to replace this with integrals
of the triplets of exact one-forms, which, again, is properly realized by f in
expression (3.2). The theorem shows that with probability one the image of
M under f is continuous. One would like more regularity, at least locally.
It would be impossible to rule out self-intersections, globally; it is hoped
that the data would impose such consistencies. Ideally.. one would like the
images of M under f to be immersed submanifolds. Expression (3.5) can be
thought of as a C' version of this. It says that with probability one the set
of points p(- M) where the image of TM under (If) is not of full rank has
volume measure zero.

4. Summary

In this paper both polyhedral and smooth manifold deformable template
models were presented. The framework of Sections 2 and 3 will allow one to
formulate and answer such questions, based upon observed noisy images, as
how to construct good estimates of such geometrical entities as curvature and
the location of its extrema, surface area, enclosed volume, and the diameter
of a certain cross section of the object (or objects) in the images.

Also one should now be able to analyze how to choose and adapt
(as n -4 oo) parameters for the sequence (in Section 2) of measures kt,
on the spaces O)M•P'"), where ?" is the polyhedral template at refinement
stage nT, as n. ) oo, since in Section 3 for the smooth manifold template
M we constructed O(M) and a measure l (Theorem 3.5) which should be
the "limits" of E(T") and iL,,. Also it appears that the Laplace-Beltrami
operator can be replaced by more general self-adjoint elliptic operators on
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the space of one forms with the details going through; the parameters p and
a in expression (2.4) are replaced by functions.

Applications of the methods of this paper are currently underway to
such problems as the estimation of the biparietal diameter of the fetal head
based upon multiple ultrasound images (the biparietal diameter is a good
measure of fetal growth) and the estimation of volumes in medical imaging.
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SWe begin with a historical survey, describing sources and content of the
fundamental papers of Paley and Zygmund about random trigonometric
and Taylor series. Then, in a discussion of the recent and current research
in this fertile area, we emphasize local properties of Brownian motion and
some of its applications, the present theory of random trigonometric and
Taylor series and some applications, Rademacher series in Banach spaces,
Sidon sets, Riesz products, the Pisier algebra, and random coverings.

1. Our starting point

Under the cryptic title "On some series of functions," Paley and Zygmund
published three papers, in 1930 and 1932, in the Proceedings of the Cam-
bridge Philosophical Society. They were anticipated by two papers of Zyg-
mund on lacunary trigonometric series in 1930, and followed in 1933 by a
short article of Zygmund on continuability of power series, and a common
work of Paley, Wiener and Zygmund, "Notes on random functions" (46, 47,
60, 42, 44, 65, and 67 in the bibliography of Zygmund's Selected Papers).
The main content and the continuation of the paper of P.W.Z. can be found
in the last chapters of the book of Paley and Wiener, Fourier transforms in
the complex domain (1934).

The PZ. papers consider series of the form

Y ..c , T C , ,1 ( W v ) f ? I tM ( 1 . i )

where c, (wv) are Rademacher functions, that is, essentially, independent
random variables taking the values 4-1 and -1 with probability 1/2 and, in
particular, random trigonometric series

Re -C,, C,, (ELI) ei' ( 1.2)
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and random Taylor series

TcCC (W)zn (1.3)
o

and the analogues when the , (w) are replaced by e2 'Tiw', where the w,•
are independent random variables whose distribution is the Lebesgue mea-
sure on [0,1]. We call (1.1), (1.2), (1.3) Rademacher series, Rademacher
trigonometric series, Rademacher Taylor series and

E Cne 2Ti w,,ff t) (1.4)

OC
Re T Cne 27i w , e int (1.5)

0

Cne e2n'• ... zn ( 1.6)

0

Steinhaus, Steinhaus trigonometric and Steinhaus-Taylor series.
The paper of P.W.Z. introduces Gaussian series

where the L& are independent Gaussian normalized random variables (ac-
tually, it would have been fair to call them Wiener series), in particular
Gaussian trigonometric series

C".
cx,, • L cos nt + &" sin "nt) (1.8)

((&.,•) and W.') being two independent normal sequences) and-in a slightly
different form-Gaussian Taylor series

Y cn cC Z" (1.9)

where (W ,,)is a complex normal sequence, for example C, -½ (L&T i± 1I.

The case r, = in (1.8) is essentially the Fourier-Wiener representation of
Brownian motion, and the paper is concluded by a proof of the almost sure
nowhere differentiability of the Wiener function.

We shall see that Rademacher series (1.1) play a fundamental role in
the study of series of functions whose coefficients are independent random
variables, in particular series (1.4) and (1.7). Steinhaus series (1.5) and
(1.6) are more tractable than the Rademacher series (1.2) and (1.3) because
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they are series of random translates; if they enjoy a property almost surely
on an interval of values of t, the same holds on the whole circle. Gaussian
series (1.8) are a way to study stationary Gaussian processes, and conversely
Gaussian stationary processes are a way to study series (1.8); therefore, a
difficult question like uniform convergence of random Fourier series is more
tractable for Gaussian than for Steinhaus or Rademacher series.

On the other hand, Rademacher series (1.2) and (1.3) were used from
the very start in order to provide examples and counterexamples in the
theories of Fourier series and analytic functions in the unit disc. This is still
the case now, and we shall discuss a few instances.

The introduction to P.W.Z. has a historical character. It describes two
streams of ideas, from which PZ. on the one hand and the work of Wiener
on Brownian motion on the other are born, and it indicates that "the purpose
of this paper is to bridge the gap between the P.Z. and the W. theories."
Actually the purpose is not achieved, and can be considered as a permanent
source of inspiration since then.

2. The two streams

Before going back to P.Z. and P.W.Z., let me develop the historical part,
which is very much in the spirit of this conference. The probability theory
of the twentieth century relies on totally additive measures and Lebesgue
integration. It arose from very specific questions, and the two main streams
are associated with two names: Borel and Einstein.

2.1. From Borel to P.Z.

"The introduction of the notion of random intre analysis is in the first instance
the work of Borel." This is the first sentence of P.W.Z., and they quote the
theory of probabilit~s d~nombrables, as expounded by Borel in Rendiconti
di Palermo in 1904. Along the lines of questions considered by Borel they
mention Rademacher (the so-called Rademacher functions were introduced
in 1922) and Steinhaus. "To Steinhaus in particular is due the reduction of
such questions to questions concerning the Lebesgue integral."

Let us be more specific. The problem of analytic continuation of a
function defined by a Taylor series, raised by Weierstrass in 1880 (Zur Func-
tionenlehre, Monatsberichte), became a very popular question in France in
the 1890's. Following a seminal paper of Poincar6 in 1892 ("Sur les fonctions
A espaces lacunaires", Amer. f. Math.), and Hadamard's thesis on the relation
between the coefficients of the Taylor series and the singularities of the func-
tion ("Essai sur l'6tude des fonctions donn~es par leur d~veloppement de
Taylor", Journal Math. pures et appliqu~es, 1892), Borel wrote his thesis on
a problem of continuation (not necessarily analytic continuation!) of some



Kahane 484

analytic functions ("Sur quelques points de la th6orie des fonctions", Ann.
Sc. Ecole Normale Sup6rieure, 1895). At this time noncontinuable Taylor se-
ries appeared as a pathological situation. Examples were given by Poincar6
(T 2-z"') and by Hadamard (T bzcý, where (c,c 1 - c,)/c,, is larger
than some positive number). Then Borel published a note in the Comptes-
Rendus in 1896 and an article in Acta Mathematica in 1897, with the same
title "Sur les s6ries de Taylor", and a remarkable statement: "une s6rie de
Taylor admet, en g6n6ral, son cercle de convergence comme coupure'" (in
general, the circle of convergence of a Taylor series is a natural boundary).
Later on, in 1912, reviewing his previous work, he considered this state-
ment as a most important result of his (cf. "Oeuvres", 1, p. 154). Here is a
translation of his comments.

The main difficulty was to give a precise meaning before going to
the proof... One can divide the series into an infinity of successive
groups of terms, and assign to each group a point of the circle of
convergence which depends only on the coefficients of this group;
these points form a set E; each accumulation point of E is a singular
point. Clearly now, if the successive coefficients are chosen ran-
domly, that is, independently from the preceding coefficients, the
probability that E is dense on the circle equals one.

I shall discuss this statement later. For the time being let me observe that
random Taylor series appear as the initial motivation of Borel for probability
theory. From the start it was the source of important probabilistic ideas.
For example, here is the germ (actually, the first statement) of the so-called
Borel-Cantelli lemma, in the 1897 article,

on a donc sur le cercle une infinit6 d'arcs independants, dont la
somme d~passe tout nombre donn&, donc, en general, tout point
du cercle appartiendra , une infinite d'arcs...

(Translation: one has infinitely many independent arcs on the circle and
their sum exceeds any given number, therefore, in general, each point of the
circle belongs to infinitely many arcs). Clearly "in general" means "with
probability one," except that the notion of a totally additive probability was
not available in 1897. Random Taylor series forced Borel, not only into the
Borel-Cantelli lemma, but, what was much more important, into the ideas
of totally additive measures and probabilities.

As far as I know, the topic was not discussed until 1929, when Steinhus
introduced series ( 1.6), which I called Steinhaus Taylor series. For Steinhaus
the basic probability space was the interval 10, 11 equipped with the Lebesgue
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measure, and the standard model for the o,, was given in this way: if

w = , (2.1)

with ,r = 0 or 1 and, say, = oo, then

Lvl = •- (3(p f 12-pl m -2"1 (2.2)
p L

In this way all problems on independent random variables can be reduced to
estimates of Lebesgue measures or integrals on [0, 11. For series (1 .6) Borel's
argument is correct and can be simplified by use of the zero-one law (but,
again, the zero-one law of Kolmogorov was not available in 19 29 ).

Steinhaus's article had a direct influence on Paley and Zygmund, but
they first considered that Rademacher Taylor series (1.3) were a much more
difficult matter than Steinhaus Taylor series (1.6); they announce the theorem
on non-continuation at the end of their first paper, and postpone the proof
until the last paper. A much simpler proof was given by Zygmund in
1933. Both proofs, the complicated and the simple, played a role in the

development of their work which I gave in the 60's.
The main othpr sources of P.Z. are orthogonal series, in particular

trigonometric series and Rademacher series. Lacunary trigonometric se-
ries provided methods and inspiration. Here is a comment of Zxgmund
(Oeuvres mathtmatiques de R. Salem, p. 24):

on peut s'exprimer en disant que, tandis que le caractý,re altatoire
est intrinsbque dans les sý,ries lacunaires, il es,,t "greff&' dans le..,
s~ries (1.2).

Lacunary trigonometric series go back to the Weierstrass example of a
nowhere differentiable function. It became a real mathematical topic with
Kolmogorov (1924), Sidon (1927), Banach (1930), Zygmund (1930 and 1932),
and it so happened, that most theorems on sums of independent random
variables were stated first for lacunary trigonometric series. This is true in
particular for the integrability properties of the partial sums (boundedness
in L") and the summability almost everywhere, established by Zygmund for
lacunary trigonometric series before being stated by Paley and Zygmund for
Rademacher series. Part of the influence of the Lebesgue integration theory
on probability theory goes through trigonometric series.

As a conclusion, the stream of ideas coming from Borel started with
a very specific problem: analytic continuation of random Taylor series. On
one hand it developed probabilistic notions. On the other, via the Lebesgue
theory, it renewed the study of trigonometric series and orthogonal systems,
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and prepared the study of series of independent random variables. P.Z.
realizes a new step in considering random series of functions, in particular
random trigonometric series.

2.2. From Einstein to P.W.Z.

The Brownian motion (first discovered by the botanist Brown, and studied by
several physicists during the 19th century) was rediscovered by Einstein as a
necessary consequence of the assumption that statistical thermodynamics is
valid for liquids as well as gas. Then he had the idea of using the quadratic
variation property in order to derive the atomic dimensions from macro-
scopic observations (that is, the Brownian motion of a particle of which the
mass is known). This was in the famous year 1905, and published in Annalen
der Physik, as were his papers on relativity and on the photoelectric effect.

The program of Einstein was realized by Jean Perrin. From the physi-
cist's point of view it was a triumph, leading to the attribution of the Nobel
Prize to Jean Perrin. From a mathematical point of view an enormous task
had still to be done, and it was performed by N. Wiener in different steps,
starting with "Differential space" in 1923. In many papers on Brownian
motion (including "Differential space", P.W.Z., and specially chapter IX of
the book of Paley and Wiener), Wiener quotes Jean Perrin:

... it is impossible to fix a tangent, even approximately, and we are
thus reminded of the continuous non differentiable functions of the
mathematicians. It would be incorrect to regard such functions as
mere mathematical curiosities, since indications are to be found in
nature of nondifferentiable as well as differentiable processes ...
(P.W, p. 157)

The program of Wiener was to define a process X(t, co) with the prop-
erties pointed out by Einstein (independent increments, mean quadratic
variation property) together with the almost sure properties suggested by
Jean Perrin (continuity, nowhere differentiability). The definition of the pro-
cess through measures and integration in function spaces appears already in
"Differential space", and also the properties of the Fourier coefficients. The

Holder property of order 1 appears in "Generalized harmonic analysis" in
1930. Only in P.W.Z. the nowhere differentiability is proved, in the stronger
form

a.s.(w) Vt i I X(t +h, ) - X(t,w) I (2.3)

for every a > 1, and it is observed that the H61der condition holds for every
ot < -. Later on, in the book with Paley, Wiener introduces X(t, W), called
the fundamental random function, through the device of Steinhaus ((2.1),
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(2.2)) and the Fourier series (the notation then is V (x, oc)), and gives a full
explanation of the program and the results.

Though P.W.Z. also contains results on Gaussian Fourier series analo-
gous to those of P.Z. on Rademacher and Steinhaus series, the main result
is the almost sure nowhere differentiability of Brownian motion, that is, the
final achievement of the program of Wiener coming from Einstein and Jean
Perrin.

3. The situation in 1933

Let us go back to the Rademacher, Steinhaus and Gaussian series (1.1) to
(1.9), and summarize what was known in 1933.

1) Suppose F I c,, 12< oo and I f (t) (! I for all n and t E [0,11. Then
the series (1.1), (1.4), (1.7) converge almost surely almost everywhere
to a sum F(t, w). Moreover

f exp(AF 2 (t, w))dt < oo a.s.(w) (3.1)

for each A > 0, and it is a best possible result. The partial sums of the
series (1.2), (1.5), ( 1.8) satisfy

sup I S, (t, W) = O(log 3/2) a.s.(w)W
t

and the sums of k1 .3), (1.6), (1.9) are analytic functions satisfying

sup 1F (r e'O,w) o ( 0og 1ý) a..

this being best possible again.
2) Suppose F I c,, j2= oo and lim inffL f2(t)dt > 0 for all n and every

Borel set E of measure > 0. Then the series (1.1), (1.4), (1.7) diverge
almost surely almost everywhere. Moreover, given any process of
summation 1, each of these series is not T-summable almost surely
almost everywhere. As a consequence, it is almost sure that none of
the series (1.2), (1.5), (1.8) is a Fourier-Lebesgue (nor a Fourier-Stieltjes)
series. Another consequence is that, assuming lim I c, I 'It'- 1, the
unit circle is a.s. a natural boundary for the random analytic functions
(1.3), (1.6), (1.9).

3) From I and 2 we know the probability of the event that (1.2) represents
an L'-function when I < p < oo. This probability does not depend
on p, and it is I or 0 according to the convergence or divergence of

- I c, 12. This provides a new and beautiful proof of a theorem
of Littlewood: no condition on the amplitudes of the coefficients of
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a trigonometric series, strictly better than the Riesz-Fisher condition

-I C, 12< oo, implies that the series is a Fourier-Lebesgue series. For
changing the signs randomly, c, I c_ 12= oo implies - ±cneiT"t V L1.

4) If I C c 12 log 1 -1 1n I< oo 0( > 0), (1.2) converges uniformly with
respect to t a.s., and the same for (1.5) and (1.8). This is no longer true
for e = 0. Moreover, writing

Si 2) 1 (3.2)

and assuming - sj = oo, (1.5) is Abel-divergent a.s. a.e., therefore
(1.5)ý L• (P.Z. states the result for (1.2) but proves it for (1.5), with

a beautiful kind of martingale argument). We see that no explicit
condition on the cis given for the series ( 1.2), (1.5) or (1.8) to represent
continuous functions or bounded functions.

5) For the Brownian motion (or series (1.9) with c, = ,) we have conti-
nuity and nowhere differentiability in the strong form given above (see
(2.3) and the H61der condition).

The year 1933 is also the year when the Grundbegriffe der Wahrschein-
lichkeitsrechnung of Kolmogorov and the Asymptotische Gesetze der
Wahrscheinlichkeitsrechnung of Khintchin were published. The law of
the iterated logarithm had been discovered a few years before. The new
and majestic stream of modern probability theory was just born. At a first
look P.Z. and PW.Z. close a period, when probability should be reduced to
the familiar Lebesgue measure on the line. They used the notations and
language of analysis, they ignored the newborn foundations of probability
theory, and they reached very sharp and sometimes final results on the

specific problems which they considered,
However P.Z. and P.W.Z. were also the source of much subsequent

work. In particular, I mention the study of Salem and Zygmund (1954) and
the applications which I gave of their methods, the thesis of Billard (1963),
the two editions of my book Some random series of functions (SRSF 1969
and 1985), and the book of Marcus and Pisier (1981). Here is a personal
selection of themes.

4. The local behaviour of Brownian motion

Let me begin with the end of P.W.Z. The local version of the law of the
iterated logarithm reads as follows:

vt a.s. lim sup X t I.

h-.o \,2 1 h I loglog l/ h
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Therefore (Fubini) the t-set defined by

I x(t + h•) - x(t)I
a.s. lim sup = 1 (4.1)

h -40 VY120h.loglog1/hI1

is of full Lebesgue measure. When (4.1) is satisfied we say that t is an
ordinary point. Do there exist other points? This is not obvious, and Paul
L~vy expressed the feeling that all t are ordinary (Processus stochastiques et
mouvement brownien, 1948, p. 247).

The H61der condition of order a < 1 was improved by Paul L6vy. One
has a.s.

uniformly on each bounded interval, and the 0 estimate can be made more
precise.

There is also a stronger version of nowhere differentiability than (2.3),
namely

Sx~t + h) - Xt)
a.s. Vt lim sup > 0. (4.3)

h-0 C '

This is due to Dvoretzky (1963).
Not all points are ordinary points. There are rapid points, for which

lim sup I X(t + h) - X(t) > 0 (4.4)

0 h -log

and slow points, for which

lim sup , (t + h) X(t) < 00. (4.5)

Comparing (4.4) and (4.2) and (4.5) with (4.3), we see that all orders of mag-
nitude are sharp. Rapid points were discovered by Orey and Taylor (1974)
and slow points by me. There were further studies on slow points by Davis
(1983), Perkins (1983), Davis and Perkins (1985), with more information on
the law of the liam in (4.5), and estimates for the Hausdorff dimension of the
t's for which this lim does not exceed a given number. Proofs of the existence
of rapid and slow points can be found in SRSF 1985.

1.t me explain how the existence of slow points in the zern-set of
X(.) can be viewed. Let E = X 1 (0) be the zero-set, and (li) the family of
contiguous intervals, I, = (ai, ai + e(). From Paul Levy's construction the
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restrictions of X(.) to the Ij are mutually independent and, when normalized
in the form

1js - /2Yj()= ej ' X(Clj + ej s),

they are independent from E as well. Given A > 0, the t-set such that
X2 (t + h) < A I h Ifor all h can be viewed as the set which stays illuminateded
when the sun runs from direction (1,A) to direction (-1, A) and the sunlight
is stopped by the graph of X2 (.). The shadowed interval corresponding to
Y?(-) is obtained from I by a random enlargement:

jj = (i - ef 3, ai + ej + fijyi),

where the couples (03, yi) are independent copies of a random couple ( 3, y)
whose law depends on A only. It is rather intuitive and it can be proved
that the Ij cover 9R a.s. when A is small enough, do not cover 9M a.s. when
A is large, and moreover that 93\ U 1i has a Hausdorff dimension tending to
1/2 (the dimension of E = 9i\ U Ij) as A --+ oo. My 1976 note contains the
full proof.

This approach uses the Paul L6vy construction and cannot be applied
for other processes. However analogues of formulas (4.1) to (4.5), including
the existence of rapid and slow points, hold for many processes. For example,
the whole is valid for fractional Brownian motion of index cx (-1/2 < a <
1/2) when I h 11/2 is replaced by I h 11 '21 ". This extends to Gaussian Fourier
series when

Cn - n -' 1-

(meaning that the ratio is bounded above and below by positive numbers).
(4.2) and (4.3) (with I h 11/2 1 a in place of I h 111/2) extends to all Rademacher,
Steinhaus or Gaussian Fourier series for which

0 < lim (2j(1/212 sa) <00

where

Proofs, references and comments can be found in SRSF 1968 and my paper in
honour of A. Zygmund (1983). Slow points are not known for Rademacher
or Steinhaus Fourier series.

It is natural and usual to compare random Fourier series and lacunary
trigonometric series (I have already quoted Zygmund in this respect). To fix
the ideas let us consider

f(t) T- 2-1acos2|t (4.7)
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and series (1.8) with c, = n- I/ 2 -0, 0 < a <, 1. They have much in common.
However, when 0 < a < 1, the local behaviour of f(.) is the same at all points:

0 < i-- f(t + h) - ftt) I < 00;
Im h10

the function f(-) is more regularly irregular than the corresponding Gaussian
process. On the other hand, when a = 1, f(-) satisfies

f(t + K) + f(t - K) - 2f(t) = 0(1 h 1)

f(t + h) - f(t) = 0(I h I log I )

uniformly with respect to t,

-f- I f(t + h) - f(t) I>0 (4.8.2)h-+0 I h. I log I

for quasi all t (meaning except on a set of the first category of Baire),

i I f(t + h) - f(t) I < 0 (4.8.3)

log Tlog log loge

for almost every t,

liM I f(t + h) -f(t) I < (4.8.4)
h--, I h-

on a dense set of t, and

f is nowhere differentiable. (4.8.5)

Here (4.8.3) is the behaviour at ordinary points, (4.8.2) at rapid points, (4.8.4)
at slow points. In this case, the lacunary series (4.7) has the same kind of
irregular irregularity as the Brownian motion. These results on lacunary
Fourier series are due to Geza Freud (1962,1966) (see also Izumi, Izumi,
Kahane 1965 and Kahane 1986 where several other references can be found).

5. A few applications of Brownian motion
and Gaussian processes to Fourier analysis

From P.Z. comes an important and general idea: in many circumstances it
is hard to find a mathematical object with some prescribed properties, and
pretty easy to exhibit a random object which enjoys these properties almost
surely. I already insisted on the use of Rademacher trigonometric series in
order to prove that no better condition than Riesz Fischer's on the moduli of

L
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coefficients implies that a trigonometric series is a Fourier series. Let me give
a few other examples using Brownian motion or Gaussian Fourier series.

1) A problem of Beurling on closed sets. Given a closed set E C 97d, with
Hausdorff dimension ax, no nonzero measure ýt carried on E satisfies

) (1 u 1-') with 13 > 0; this comes from potential theury. Is2'
it possible to find E with a prescribed dimension Oc, carrying nonzero
measures 4 such that (t(uL) -= O( u 1-0) for all 13 < c? Let me remark

that if d >_ 2 and cx = d - 1, the d - 1 dimensional sphere answers the
question, and the boundary of the d-dimensional cube is not a solution,
because j•ul.) cannot even tend to zero. The difficult situation is d -I
and 0 < cx < 1. Salem solved Beurling's problem by means of an ad hoc
random construction (1950). The Brownian motion provides a simple
solution: choose any closed set F 1- 91, with dimension '; then XfF)
answers Beurling's problem a.s. In short, Brownian images of closed
sets are Salem sets [26].

2) A problem on U-sets. A compact set E W_ IN" is called a U-set if it
carries no nonzero distribution whose Fourier transform tends to zero
at infinity For example, the boundary of the d-dimensional cube is a
U-set. Salem introduced in 1944 an entropy condition which implies
that E is a U-set, namely

lim inf N- ,-- - 0
-,0 logl "C

where N, (-) denotes the smallest number of balls of radius c whose
union contains F. Actually Salem's condition implies more, namely

lim i (u I.sup 1(u)

for all pseudomeasures (distributions with bounded Fourier trans-
forms) calried by E. Using Brownian images (f a XIF)) Salem's
condition appears best possible in the following sense:

a) given 6 > 0 there exists E (_ I with N, IL) O-log 1, carrying a
probability measure p such that m t(u) Kz 6.

b) given any function AIc) tending to oo as c -- 0 there exists a
non-U-set I with N, ([) =0IA(c)log! ) (C -4 0) [27].

3) A problem on modifications of continuous functions. A famous theo-
rem of Mengov says that, given a continuous function f on T, and c > 0,
it is possible to change f on a set of Lebesgue measure _< e and get a
"good" function; meaning that the Fourier series converges uniformly
[2, p. 438-457]. Katznelson proved that "good" cannot mean that the
Fourier series converges absolutely: there exists a continuous function
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f such that no restriction of f to a set of positive Lebesgue measure
can be represented by an absolutely convergent trigonometric series
(1975). Olevskii was able to get such bad functions f in every H61der
class of index o < - (1978) and Hrukev had the idea of using Gaussian
Fourier series in order to get these bad functions (1981). Actually the
Brownian motion is an example [21].

4) Another problem on modifications of continuous functions. Given
again a continuous function f on T, there exists a homeomorphism
(p : iT -- T such that f o (p has a uniformly convergent Fourier series.
This is a theorem of Bohr and PAI for real valued functions, Saakian,
Kahane and Katznelson for complex valued functions (for a history
and comments, see Kahane 1982). Is it possible to replace uniformly
convergent by absolutely convergent? The answer is negative (Olevskii
1981). Open question: does the Brownian motion provide an example?
(Here as above, we subtract a linear term to the usual Brownian motion
in order to have a continuous function on the circle).

5) The problem of spectral synthesis in C' ('.1). It reads as follows: given
(a,,),. in C(Z) and (b,, ¢ in f' (Z), such that the function

fft) Y- ac i. '

vanishes on the support of the pseudomeasure

Yt - br eml

is it true that necessarily

J, f)=T C111 b E , 0
nEZ,

In 1959, Malliavin solved the question in a negative way, using a la-
cunary trigonometric series for the definition of f. Actually Gaussian
trigonometric series give easier computations on applying Malliavin's
idea, namely, to define T as Y'(f), ,Y being the derivative of the D)irac

measure. This is very much in the spirit of local time (which can be
defined as )(fl).

6. Back to random Taylor series

A discussion of Borel's statement on random Taylor series

Y X0 z" (6.1)
0
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whose coefficients are independent complex random variables will show the
crucial role of Rademacher series.

Let us start with Rademacher Taylor series (1.3), and suppose that

lim c_ I/n= 1, i.e., the circle of convergence is the unit circle I z -=. We

want to prove that the unit circle is a natural boundary a.s. (theorem of P.
Z., proved in their last paper). Suppose the contrary: there exists an arc I on

the circle which consists of regular points (let us say: a regular arc) with a
positive probability, and this probability is I by the zero-one law. The length

of I exceeds 27, for N large enough.

Now we change signs in (1,3): we define ,j = 1 c, when rT k (mod
N) and e = -c when rL # k (mod N). The series

•",~~z (1.3.1
Cnn

has the same almost sure properties as (1.31, and adding (1.3) and f1.3.)
we obtain a function of the form zkHk(ZN ). Being regular on I, Hk.(:N I is
regular on the unit circle (a.s.). Now

IN-I x

1j- j,•(Z'N I --- 2 cliclz",

k 0 0

therefore the unit circle is regular for (1.31, a contradiction. (In the N68
edition of SRSF I thought that this proof was new Actually it was given by
Zygmund in 1933).

The unit circle plays no special role. What we proved is that the circle
of convergence of (1.3), whenever it exists, is a natural boundary a.s.. This
result extends to series (6.1) whenever the X,, are symmetric (same law for

X,, and -X,, ). Here is a way to see it. The X, are defined on 0. Let US

introduce another probability space 0' and a Rademacher sequence c,, on
0'. Now consider Q < 0' as our probability space, and the random series

L C,, (,')X,, (wL,)z". (6.2)

For each given "', (6.2) is nothing but another version of (6.1), therefore
(6.2) has the same almost sure properties (on 0 ,, 0') as (6.1) (on 0). For

each given Lo, (6.2) is a Rademacher Taylor series, therefore has its circle of
convergence as a natural boundary a.s. (on 0'). Therefore the same holds a.s.

on 0 0 0', proving the result. Let me observe that the radius of convergence
of (6.1) is a constant a.s.; we can speak of the circle of convergence of (6.1)
whenever this constant is neither 0 nor oo.
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When the X, are not symmetric, we use again 0 < 0' and consider

, Xri ( I'))z . (6.3)

Now the coefficients are symmetric and independent, and we can apply the
previous result. Either 1 z 1= p is a.s. a natural boundary for (6.1 ), or (6.3)
has an a.s. radius of convergence p' > p. In this case a.s.(wu')a.s.(wV) the
circle i z 1= p' is a natural boundary for (6.3) (with the obvious modification
when p' = oo). We can choose w' in such a way that

1) the radius of convergence of 7- ' X,, (LL')z" is p;
2) a.s.(wL,) the circle of convergence of (6.3) is a natural boundary.

Writing X,, (tL,') = x,,, we decompose ý6.1) in the form

Y- x,,z" .- Y-(x,, x,,)z" b6.4)
C o

and we obtain as a final statement something slightly different from Borel's,
namely: either : z p is a.s. a natural boundary for f6.1), or (6.1) can be
decomposed in the form (6.4), where the first series converges for i z_ .. p
and the second a.s. in a larger disc z p.-- p', which is its domain of existence.

This is a theorem of Rvll-Nardzewski (1953), answering a question of
Blackwell. The proof given here is taken from SRSF.

From the proof we can extract two principles which apply in more
general situations, called the principle of reduction and the device of svrn-
metrization in SRSF pp. 8,9. Now we consider independent random vectors
in a linear space and we denote them by X,,- If the X,, are symmetric and
c. . ., c:,,, is a fixed sequence with values , I or I. the random se-
quences (X,,) and (c,, X,. ) have the same distribution (that is what we used
first). If the X,, are symmetric and (c,,) is a Rademacher sequence inde-
pendent from (X,, 1, the random sequences (X,, I and (c,,X,, )have the same
distribution. As an application, let us consider a property P which can be
satisfied or not by any sequence of vectors, and suppose that, whenever (c,,
is a Rademacher sequence and (x,, is a constant sequence of vectors, (C,, X,,
satisfies P a.s.; then, assuming that "(X,,) satisfies P" is an event, this event is
almost sure. From this principle of reduction it appears that the Rademacher
series of functions, or Rademacher series of vectors, plays a central role.

Now, given a random vector X defined on 0, the random vector
"I'(w, to') - X(w,) - X(d'} defined on the product space 0 • ) is sym-
metric. When we know that Y enjoys a given property a.s. (on 0 0, it
follows that there exists w' ;- ( and a fixed vector x - X({w) such that X x
enjoys the same property a.s. (in (2). This is the device of symmetrization.
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A third principle comes directly from the original proof of P.Z. of the
non-continuation of series (1.3). Here is the idea: if a Taylor series - ci,, z" is
continuable across the circle of convergence to a point C, the series - , 2",
though divergent, is summable by a convenient summatior matrix. Now,
given any summation matrix S (the exact definition is given *n SRSF p. 12)
and a series -' X,, of independent symmetric vectors in a Banach space,
if the series is S-summable a.s., it converges a.s. This third principle (a.s.
summability implies a.s. convergence) can be applied in many situations.
It gives non continuation theorems for random Taylor series with several
variables, for random Dirichlet series and for other series of analytic func-
tions. Through Fejer's or Lebesgue-Fejer's theorem on Fourier series it has
a kev role in order to explain that t1.2) fails a.s. to represent an [I 1 unction
when (c,, ) _ f2.

7. Back to random trigonometric series

Let us consider Rademacher trigonometric series

Y- e,,r,,cos nt t , C (7.14

where the amplitudes r, and the phases q,, are given, and Steinhaus trigono-
metric series

r rcos(fnt 2-Tw,, 7.2)

where the r,, are given, and more generally

Y X,,cos(nt + q),, 1 7

where the X,, c''1' are independent symmetric cornple\ variables.
Via the principle of reduction, the PZ. theorems saY that the following

properties have the same probability, 0 or 1:

"* (7.3) is a Fourier-Lebesgue series
"* (7.3) represents a function which belongs to all LI' (I ,p .. x,
"* (7.3) converges almost t ,erywhere
"* (7.3) is Abel-summable almost everywhere.

The case of uniform convergence is difficult, though a rather precise
result can be given in terms of the

12

Si 
r 2)Y ( p 1

(n2' 21
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(already introduced in slightly different forms in (3.2) and (4.6)) for
Rademacher and Steinhaus trigonometric series (7.1) and (7.2). Here is
the result:

1) If - s = oo, (7.1) and (7.2) fail a.s. to represent a bounded function.
2) If -7 s, < co and sj is a decreasing sequence, (7.1) and (7.2) converge

uniformly a.s., therefore represent continuous functions a.s.. The sec-
ond statement is a corollary of a result of Salem and Zygmund (1954).
The first was stated in P.Z. but proved only for Steinhaus series (7.2)
as I already said. The first proof was given in Billard's thesis (1963).

Billard's idea was to derive properties of Rademacher series from prop-
erties of Steinhaus series, by means of a principle of contraction. We shall
see a general form of the principle of contraction in the context of random
series iin Banach space. The initial inspiration was to prove that (7.1) and
(7.2) fail to represent a bounded function with the same probability. Itere
is a consequence of Billard's theory: the following properties have the same
probability, 0 or 1:

"* (7.31 represents a bounded function
"* 17.3) represents a continuous function
* (7.3) converges everywhere
* (7.3) converges uniformly.

Of course, the interest of Steinhaus trigonometric series is to involve random
translations, and Billard's theory contains interesting st,,tements in series of
random translate,,.

Let me gi\ e an application of Rademacher trigonometric series to a
property of Fourier coefficients Of continuous functions. Is it true that, given
a positive sequence (r,,) in C2, one can choose the phases W, inl such a
way that

• ,•Cosflt • 4),j1

represents a continuous function? The answer is no, and given by a lacunary
series. Is it true now that, given (r,,) in f2, one can enlarge the r, (i.e., choose
r', ;; r,, ) and choose the q, in such a way that

Y ri,,cos I tt f 4),,,

represents a continuous function? The answer is yes, using an iterative
randomization (De l.eeuw, Kahane, Katznelson 1977).
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8. Rademacher series in Banach space

My first motivation for considering Rademacher series in Banach spaces
was to obtain the principle "summability implies convergence" , and the
contraction principle, in this context. The contraction principle depends on
an integrability property of the sum of Rademacher series, which I obtained
as a consequence of the fact that, if the probability, that such a sum is large,
is small, the probability that it is twice as large is very small:

P(II VII> r) < = JNc I V 11> 2r) < a-2

(Kahane 1964).
As a consequence, not only 11 V lIE L1(O), but exp A II V IE L 1(0))

when A is small enough. Actually the final result in this direction is due to
Kwapien (1976): exp ox I V 112E L1 (Q) for all oc > 0.

The contraction principle expresses that the a.s. convergence (or bound-
edness) of a Rademacher series of vectors

Y- ,t, (8.1)

implies the same for any series 7 cAu,,, where A,, is a given bounded
sequence. As a consequence, the Rademacher series and the corresponding
Steinhaus series

C 2 'Uiw, U,, (8.2)

have the same probability to converge (and also the same probability that the
partial sums are bounded). In the case of trigonometric series in the space
of continuous functions on T, Billard's theorem is recovered. It is the way
things are explained in SRSF.

There is now a huge literature on random series in Banach spaces,
with a special interest on Rademacher series, which play a basic role in the
relation between geometry and probability in Banach spaces (Hoffmann-
Jorgensen 1974 and 1977, Maurey and Pisier 1976, Garling 1977, the book
of Pisier 1989, the book of Ledoux and Talagrand 1991, where a very huge
bibliography is given). Khintchin's inequalities, which express the behaviour
of the norms II - c,�u,, I in different LP (0), appear as a consequence of the
strong integrability (Pisier 1978). The notions of type and cotype express
the behaviour of the expectation F II F" c-u,, 1 II with respect to the LP norm
of {111 u,, 1} (Maurey and Pisier). Isoperimetric methods were developed
(Talagrand).
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Let me mention only one comparison theorem of Talagrand (Theo-
rem 4.12 in Ledoux-Talagrand 1991). First, using duality, the norm of a
Rademacher sum (say, of N terms), is expressed as

e•ix =sup eiti

1 tcT

where t (t 1 ,. tN) E 91 N and T is the image of the unit ball in B' through
the mapping f - )f(xi)}. The comparison theorem involves a convex and
increasing function F(914 -4 9V ) and a sequence of contractions Wi (91 -) 91)

such that (pi(0) = 0; it reads as

N N

E (F (sup C iqci(t) i) ] E F sup iti

Previously such an inequality was obtained when the Rademacher sequence
ci is replaced by a normal sequence L.1, as a consequence of comparison
theorems for Gaussian processes. Rademacher sums need a quite different
treatment.

Open problems on Rademacher series in Banach spaces can be found
in the book of Ledoux and Talagrand (section 12.3).

9. Back to P.W.Z.'s program ("to bridge the gap")

From the contraction principle Rademacher and Steinhaus series in Banach
spaces behave in the same way. If now we consider, in addition to (8.1) and
(8.2), a Gaussian series

•"Lu (9.1)

where (n) is a normal sequence as in (1.7), the almost sure convergence of
(8.1) by no means implies the same for (9.1).

However, if we consider Rademacher, Steinhaus and Gaussian Fourier
series (1.2), (1.5), (1.8), they have the same probability to converge uniformly
(which is the same as to represent a continuous function, or to represent a
bounded function). This remarkable fact was discovered by Marcus and
Pisier in 1978. The book of Marcus and Pisier "Random Fourier series
with applications to harmonic analysis" contains the proof, together with an
explicit condition on the cn, and previous results of Pisier.

Here is the explicit condition. Consider

*b(t) = I cT, I2 sin~nt
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and define

I~l, (= dx

where tV is the increasing rearrangement of ip. Then

I( ) < 00

is the necessary and sufficient condition for (1.2), (1.5), and (1.8), to con-
verge uniformly, or represent a continuous function, or represent a bounded
function, a.s.

Actually this is nothing but a reformulation of the Dudley-Fernique
theorem for a stationary Gaussian processes. The usual form of the Dudkl'v-
Fernique theorem, for stationary Gaussian processes Xt defined on the circle
'T, involves the integral

I= 1/log N(c)de

where N(c) is the minimum number of balls of radius c covering 'T, in the
metric defined by

d(t,t') (L X, -- X , 12)12

The Dudley-Fernique theorem was the solution for stationary process of a
long-standing problem of Kolmogorov: how to recognize, from the geometry
of the Gaussian (centered) process (X, )t K if there are a.s. bounded, or
a.s. continuous, versions? Surprisingly, the general problem has a solution
obtained by Talagrand (1987). Here is a simple and weak form of the result of
Talagrand (Theorem 12.10 in Ledoux-Talagrand). Let me start with examples
of Gaussian processes with bounded versions:

1) (Y,,),, ,, with LY= 0 (because 7- ?(I Y,, i-> X) < oX when A is
large);

2) (X, )t.K in the convex hull of such a sequence (Y,).

Theorem: example 2 is the general case.
There is a weakness however in this remarkable result, as well as in

other versions of Talagrand's theorem: how to recognize the YV, when (Xt)
is given? Therefore, the interest of the theorem of Dudley and Fernique
is not abolished with the theorem of Talagrand. It can be added that the
necessary and sufficient condition of Marcus and Pisier does not suppress
the interest of looking at the s (= T "2,, -, .1 , I c,, 12)1 2) in order to get
easy information on local regularity or irregularity.
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10. An open question: Bridging the gap for random Taylor series

I insisted on the non-continuation problem, but there are a lot of problems,
works and results on random Taylor series; a partial bibliography can be
found in SRSF 1985. I shall restrict myself to one question: what can be said
on the range and the distribution of values of functions F(z) which are sums
of series (1.3) (Rademacher), (1.6) (Steinhaus), (1.9) (Gaussian) in the case
when lim I c, 11 ̀1= 1 (the unit disc is the domain of existence of the random
analytic function F(z)) and I c, 12= oo (i.e., F(z) does not belong to the
Nevanlinna class)?

There is a very good information for Gaussian Taylor series (SRSF 1985,
chap. 13, and Kahane 1987): the range of F(z) (I z 1< 1) is a.s. the whole plane
T. Moreover, for some fixed sequence r, -4 1, we have a.s. estimates for the
Nevanlinna function

N(TbF = r(r, b, F) ds

where r(r, b, F) is the number of zeros of F(z) - b in the disc 1 z <r, namely:
it is almost sure that for all b e L,

1) N(rv,b,F) =N(rv,0, F) 4-O()

2) N(r,,,b,F) 1 -logp(r.,)where

p x,- C 12 r2n, i 2

p(r) -= Cn 2, r = I ( F(rci ) 2.

For Steinhaus Taylor series the first part is known, namely, the range of FWz)
(I z ý< 1) is a.s. the whole plane T (Offord 1972; also, for a far-reaching
generalization, Murai 1978).

For Rademacher Taylor series the question is open as far as I know.
The best result which I know is due to Jacob and Offord (1983): if log N
0 - , I c I) (N -) oo), then the range is Ca.s..

It should be added that the topic has a long history, going back to
Littlewood and Offord 1948-1949, who considered the distributions of the
zeros of F(z) - G when F(z) is a random entire function.

There is also a remaining question, even in the case of Gaussian Taylor
series. Is it true that either such a series represents a.s. a continuous function
on the closed disc I z I<- 1, or that it maps a.s. the open disc I z j< 1 onto the
whole plane V?
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11. Some applications to harmonic analysis:
Sidon sets, the Pisier algebra, Riesz products

I have already given two applications of the P.Z. theory to Fourier series:

1) if I a_• 2 = oo, F +aeint E L1 for some choice of signs ±;
2) if F I a, 12< oo, F b,•eint E C for some sequence b,, Ib, ,> a ,

Moreover, I gave a series of applications of Brownian motion and special
Gaussian processes.

Let me concentrate on another aspect for a while: the use of random
polynomials or random series in order to study lacunary sets. A theorem
of Sidon says that, if A is a set of integers which is Hadamard-lacunary (the
distance between two consecutive points is larger than some given fraction
of their distances to the origin), and if a continuous function on 'T has its
frequencies in A, its Fourier series converges absolutely. With obvious and
classical notations we have

CA = AA. (11.1)

Now to take (11.1) as a definition of a Sidon set in Z.
A Sidon set has to be lacunary in some sense. The first method in order

to see this is to use random trigonometric polynomials of the form

P(t) = T c;Aei't, cA = 0 or 1.
AEA

From the definition of a Sidon set there exists a constant K = K(A) such that

II P ]IA<, K 11 P 1Ic .

We may have an estimate of the form

SIIP IIc•< B (Y- I CA 2) )2 >0.

For example, from estimates of Salem and Zygmund we can take B =

-log N, N being the degree of P. Since

TI C\ I= Y-I C\ 12 = V

(number of terms in P), a convenient choice of ± gives

v <, KBvv11
2

-v < K2 B2 .
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Using the estimate of Salem and Zygmund we see that the number of points
of A in [-N, NI cannot exceed K21og N. Using an estimate of the same kind
for random trigonometric polynomials in several variables we have a more
precise necessary condition: if A is a Sidon set, there exists a constant K' such
that A contains at most [K's log -vi elements of the form

C1 + nI P I + n12P2 + • • - + n~sPs

when a, Pi , "', ,p. are given real numbers and ni,rn2, n,n are integers
such that I 1i I + I _ý1 I +" " rs In, 1v (Kahane 1957).

In the opposite direction any quasi-independent set A is Sidon. Quasi-
independent means that 'EAC, oxA = 0 with c,\ = -1,0, 1 implies that all
oc, are 0. A finite union or quasi-independent sets is also Sidon. Until now it
is not clear if this is also a necessary condition, nor if the necessary condition
given above is also sufficient.

In 1960 Rudin introduced another kind of lacunary set, the so-called
Ap-sets, and proved in this connection that the L'-norms of functions with
spectrum in a Sidon set behave like the LP-norms of a Rademacher series,
namely O(yv-) (p -4 oo).

A breakthrough in the theory of Sidon sets was made by Drury (1970)
when he proved that a finite union of Sidon sets is a Sidon set; his method
was to introduce Q = TZ, and harmonic analysis on 01 as well as T.

The next step was Rider 1975. Rider gives a new characterization of
Sidon sets, which can be expressed as

Ca.s. A = AA. (11.2)

Here Ca,.•. is the space of functions

f - Y ýein t

such that, for almost all changes of signs,

represents a continuous function (if this is true for all changes of signs, then
f E A). Actually Rider considered Steinhaus and not Rademacher series; we
now know that it is the same, and also the same as Gaussian series.

Finally, using (11.2), Pisier was able to prove the converse of Rudin's
theorem (1978). It was the most spectacular use of random Fourier series in
order to study lacunary sets. The whole theory is expounded in the book of
Marcus and Pisier 1981.
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Here is another spectacular result of Pisier using C, (1979), also de-
scribed in Marcus-Pisier. Let us consider

C n Ca,.

that is, the space of continuous functions on T such that a random change
of signs of the Fourier coefficients gives a continuous function a.s.. Pisier
proves that Lipschitz functions operate on CnC,•,. Asa consequence COC,.,
is a Banach algebra which is strictly contained in C and strictly contains A,
such that the Lipschitz functions operate. This Pisier algebra gives a very
neat answer to a problem of Katznelson (find homogeneous Banach algebras
between C and A, on which not only analytic functions and not all continuous
functions operate), and it is a remarkable object in harmonic analysis.

Let us go back to (11.1 ), the definition of Sidon sets, for a while. (11. 1)
expresses that CA is isomorphic to AA, which in turn is isomorphic to 01.
Now, given vectors x in C',

( Xill" ) C (E I - x f2

for all q _> 2 (property of cotype 2).
Conversely, if CA is isomorphic to f, A is a Sidon set (Varopoulos

1976). If CA has cotype 2, A is a Sidon set (Pisier 1978). If CA has a finite
cotype, A is a Sidon set (Bourgain-Milman 1985, developed in Prignot 1987).
This is the best that we know on the geometric properties of CA as a Banach

space which are equivalent to the fact that A is Sidon.
New characterizations of Sidon sets were given by Pisier (1983) and

Bourgain (1985); without answering the questions we raised they are cur-
rently the most powerful. Bourgain proves the following implications

(1) =ý (2) -z (3) z, (4) zzz (1)

where

(1): A is a Sidon set

(2): A has the Rudin property on L P norms
(3): A has the Pisier property, meaning that there exists a 6 > 0 such

that each finite subset A of A contains a quasi-independent subset B
such that I B I> 6 1 A I (I I is the cardinal)

(4) (Bourgain's property): there exists a 5 > 0 such that, given (GaO)AEA,

vanishing outside a finite set, there exists a quasi-independent A C A
such that

AEA AEA



{ 505 Sonie continuations of the work of Paley and Zy'gmund }

Pisier already proved (1)M(2) as we saw, and also (1)4(3) (see the references
in the announcement Pisier 1983). Bourgain's proof uses random sets of
integers in order to get (2)=(3) and an elementary and clever argument to

obtain (3)4(4). The last implication (4)4(1) is obvious when you are familiar

with Riesz products.
Riesz products are of the form

H (1 + Re(c,eixtl ) (11.31

AEA

where A is a quasi-independent set of integers, and I cA I<_ I for all A. The

condition on the coefficients guarantees that the partial products are positive,
and the quasi-independence of A guarantees that their normalized L '-norm

is 1. When A is quasi-independent, Riesz products provide a way to express
a bounded sequence (CA)AEA as the restriction to A of the Fourier transform

of a bounded measure. Here is another way ýo express Bourgain's property:
there exists 6 > 0 such that, given (GA ()A with ý GA j• 6 (A •-: A), there
exists a measure 4t in the u-convex envelope of Riesz products of the form
(11.3), such that

aA = ýA (A E A).

The classical Riesz products are of the form

F10 4- Reice CtAý) (14

where the A1 are positive integers, and

A , jI//Xi 3 (i = 1,2 ... ). (11.5)

The important property of the sequence (A1 ) is that it is dissociate, meaning
that there is at most one way to express any integer n as a linear combina-

tion F- aA, O.i - -. 1,0, 1. Dissociate means more than quasi-independent.
There is an intimate relation between Riesz products and lacunary trigono-
metric series (see Peyri~re 1991, Fan Ai-Hua 1989), and Riesz products are a
mine for examples of measures in Fourier series, and, now, for multifractal
analysis. Here is a basic problem: let uz fix the A1 and consider the measure
defined by the Riesz product (11.4) as a function of the sequence c - (c1 )
(we always suppose ci I 1), denoted by t,. Given c and c', is it true that

either ýt, - ,, or , -. t,, ? How to express conditions of orthogonality or
equivalence in terms of c and c'? The most promising result in this direction
comes from Kilmer and Saeki 1985. They randomize (11.4) in the form

H(! + Re(cje 27TweiA•) (11.6)
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where (wi) is a Steinhaus sequences, and get a random measure l• .. Given
c and c', either -L ýiwc, a.s. or p, - pw,c, a.s.. Moreover, the explicit
condition for the a.s. equivalence can be expressed as

o0

y-d2(cj'cý) < 0.,

d being the distance in the disc given by

ds 2 = d0 2 + (1 - r)- 1/ 2dr 2  (z = rei@).

!t is quite possible that this holds also for (11.4) under the assumption ( 1.5).
It can be checked that it holds if (11.5) is replaced by the stronger condition

A < 00.

(11.6) is an example of a product of independent weight functions Pi (t, wU).
The general frame is P1(t,w1 ) >_ 0 and EPi(t, w}) = 1 for every t. The
random measures defined in this way have interesting properties (see for
example Kahane 1989 or Kahane 1991).

12. Divergence everywhere, convergence everywhere,
and random coverings

Let me turn to a topic which is very much in the spirit of P.Z. We consider a
sequence of positive functions f,, on the circle T and consider the series of
random translates

Y- f (t - wa).

For simplicity let us assume 0 ý< fn (t) <- for all n and t. Convergence and
divergence almost everywhere create no problem; either one is almost sure
according tý) the convergence or divergence of

How to express the almost sure divergence resp. convergence on the whole
of T, or the almost sure divergence resp. convergence on a given part of T?

The question of divergence is far from obvious even when f n = I iodI
and there are considerable difficulties for fn = c. lio,,,1. Let me explain the
situation in both cases.
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For f, = 1l0j.] the question is the condition of almost sure covering of
T, or a given part of T, by random intervals

1, = [0, f,] + w,,.

For, if covering holds a.s., it holds infinitely many times. The question goes
back to Dvoretzky, and there were contributions by Erd6s (though no proof
was published), Billard and myself; methods and results prior to 1968 are
expounded in the first edition of SRSF. Here is an idea of what was known
at this time:

"* when f,, = covering of T has probability 0, and the uncovered set
has a.s. Hausdorff dimension c; subsets of .T of dimension < 1 - e are
covered, subsets of dimension > I - e are not covered a.s.;

"* when f,, = -,covering of T is almost sure;
" when f,, = - it was undecided.
"* writing

00

k(t) =exp 57 n W )

I

(f )+ denoting the positive part),

J k(t)dt < 00

implies that the probability of covering .T is 0, and

J0 k(t)h(dt) < oo

where V is a positive measure, implies that the probability of covering
the support of ýi is 0. Therefore, given a Borel set A C T

CapkA > 0

implies that A is not covered a.s..

The topic moved suddenly in 1971. Independently, B. Mandelbrot and
S. Orey solved the case f, = 2, and Shepp gave the final answer for the
covering of T. a.s. covering holds if and only if

I k(t)dt = oo,

and the condition can be expressed in the elegant form

2- nexp(f, + f2 +• + fn) = oo,
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assuming, as we can, C >- C2 C3 Coverings of other bodies were
considered. A brief history of the topic up to 1985 is given in the second
edition of SRSF, therefore I skip the references.

In 1987 1 discovered at the occasion of a course in Urbana that

CaPkA = 0

is necessary and sufficient for the a.s. covering of A (in case the Lebesgue
measure of A is positive, this means k q L I). Different proofs (the initial
proof being the shortest) are given in a recent paper (Kahane 1990) where
also covering oft'V by random translates of homothetic bodies is considered
(final results are obtained in the case of simplexes; the cases of balls and
cubes are still open).

L.et me turn to the case fT, c,, I )j, now, c,, ý'0. Of course, it is,

interesting only in the case of covering. When

,It j f~ " t - aL'l 12.1

it means a kind of density (depending oniv on (c,, of the sets A, of integers
n (depending on t) such that t I,.This problem is introduced in the thesis'
of Fan Ai-Hua (Orsay, 1989).

[Fan Ai-l lua proved, in the case f, ~.that (12.1 jhas probability'N
I when c,, - ---1 On the other hand (12.1 )has probability 0 whenlo'g log 11

o< o, from our first observation. There is a large gap and it does niot
seem easy to fill it.

Iliere is an addition in the case C ,~ Now (12.11) has probability 0
when

This can be seen by integrating the series in (12.1 ) against a convenient
random measure. On the other hand, it has probability 1 when c,, decreases
and satisfies

where p( 1) -~ 2 and qpl(rt - 2qs" ' .The gap is still larger in this case.
The random measure to be considered is associated with the f,j by

means of the usual operator Q associated with a product of independent
weights of the form

P" (t, w) = expl -An 1 e,j,:(t - )/(np(-,)4 1 f,j).
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The choice of the A,, has to obey two conditions: 1) Q should operate on
the Lebesgue measure dt, and give a random measure Q(dt); 2) Q(dt)
should integrate the series in (12.1 . An exposition for random coverings
and operators Q associated with a product of independent weights is given
in (Kahane 1989) (MR 91e 60152).

Convergence everywhere is also interesting when f, - c,,10 ,,
When

vt j f (t -f un) (t 12.21

it means a kind of scarcity of the sets A, considered before.
Let me mention a remarkable result of Fan Ai Iiua (unpublished) in

the case f,, = " (a > 0): (12.2) holds a.s. whenever c,, decreases and
Ti c, .. On the other hand, we know that t n1 c,, X. implies

E fnIt - (L : a.e as.

Therefore, assuming f, c, 1 c., .iand fcl ) decreasing,,7- T I c,
is necessary and sufficient in order to have (12.2) a.s. The monotonicity
condition on (c,, ! is essential, as is clear bv considering lacunary series ot
the type

Ei ' E X,,(t ,',

(x, - 1.I given such that f, , 0, and n, sparse enough).
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Empirical characteristic functional analysis
and inference in sequence spaces
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a The concept of empirical characteristic functionals in certain sequence
spaces is proposed. The convergence of the related empirical measures and
processes are linked to the idea of weak convergence along projective svs-
tems. A review of multivariate empirical characteristic function techniques
is included. Some hints are given for the statistical inference on probability
distributions in sequence spaces.

1. Introduction

The empirical characteristic functions, following the initiation of their sys-
tematic study in the pioneering paper by Feuerverger and Mureika [9], have
proved to be very efficient tools for stochastic analysis and inference prob-
lems. As many distributional properties such as stable distributions and

distributions in abstract spaces can be characterized solely by characteristic
functions (or functionals), it is natural that the inference problems related

to such cases should be more favorably treated by empirical characteristic
functions rather than empirical distribution functions or densities.

Let (S,3", P) be a probability space and let E9 = (01,... ,0,) be an
T" " 'B" measurable mapping of S into R", inducing a probability measure
4,, in (R",3•"). Then rm independent observations 19i = (0- 1,-. .,,,),

(j = 1,2,..., m) of the random (finite) sequence E(LO) will yield a tableau of

the following form:

Oil 012 01n..
021 022 02,,.

0 .i Orn2 Orn "
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so that Oj(w) = , = 1,.,m). For increasing size of obser-
vations and the later reference to infinite sequences, the double array (1.1)
has been viewed as an expansive one. The empirical characteristic function
is defined by

Xnm(t,W) := exp(i(t.x))dXnm(w,x)

Y I exp(i(t. E,(w)))

j-1

1 exp(i tsOjs), t E R- (1.2)

where A,. is the empirical distribution associated with (1.1), i.e.:

A± __.j 6(9,(w)) (1.3)
j=1

(6(x): concentrated unit mass at x E R").

By the Glivenko-Cantelli theorem, A,,m almost surely uniformly con-
verges to i,, on R". Furthermore it is well-known that on each bounded set
K c Rn that

sup IX,m(t) -xn(t)l -4 Oa.s. (1.4)
tES

where X,(t) = JR, exp(i(t • x)) dlt,, (x). Furthermore if t,• is singular with
respect to Lebesgue measure on R', the supremum can be taken over all
of Rn [4, 9]. Several estimates have been given for the rate of convergence
in (1.4), cf. [4, 111; see also Section 5.

More interesting and stronger modes of convergence occur in relation
to certain stochastic processes (fields) associated with empirical characteristic
functions. Two of the most important ones are:

1)

Ym(t) = m'(X^.(t)- Xn(t)) t E R" (1.5)

2)

Zm(t) = f{XTm(SM t)l - IX,(t)I2} t E R" (1.6)
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where in 2, Sm is the sample covariance matrix and Xn1,(S•- t) is the Ma-
halonobis transform of X,, under the assumption that the appropriate
conditions exist. 1 should be regarded as a complex-valued stochastic field.
Finite dimensional distributions of the process Ym (t) converge by the multi-
variate central limit theorem to those of a complex valued n-variate Gaussian
random field Y"' (t), which can be represented by the stochastic integral

Yp"(t) = exp(i(t -x)) dB" (x), t cRn,

BP" (x) being an n-variate Brownian bridge process associated with the mea-
sure •i. In other words B"- is an n-variate Gaussian process satisfying for
x, y, x' C R ':

E[B'" (x)] = 0

E[BO"(x)B", (y)] = ýL,[{x' : x'

_< x Ay}l - 4n[{x' : X' •<- X}'] ýI X' : X' <, 1J1l
lim B", (Xl,...xn) = 0, j =l..r

lim B"'(xl,...,x,) =O.

It is shown that Y"" (t) has the same covariance structure as Ym (t), i.e.,
E[Y"•(t)YP-(s) =Xn(t - s) - Xn(t)X,(-s) and EY"(t) = 0.

For T> 0 let a compact set K, be given by K, = [-T, T]n. The processes
Ym(t) induce probability measures in e2 (K,). These measures will not
converge weakly to the distribution of Y""(t) unless the latter process has
continuous paths. As worked out in [4, 12], Yr converges weakly to Y", in
e 2 (Kn) if and only if

i•, ds < oo (1.7)

s(log )½

where q, (s) is the non-decreasing rearrangement of (I - ReX {t)).
To work out the weak limit of the process in 2 is much more difficult than

that of 1. Under the null hypothesis "the measure •L is normal with some
expected value vector and some non-singular covariance matrix," however,
the process becomes

Zm(t) = m {IX, ,,n(S- 4t)12 - e- t t )} (1.8)

and it converges weakly in ((K. ) to the sample continuous Gaussian process
Z" (t) satisfying Z- M(t) = Z" (-t), E[Z" (t)] = 0 and having the covari-
ance structure

Pst = E[Z"" (s)ZM" (t)l = 4e-(sS-tt){cOsh((s.t})- I - 1(s.t)2}, (1.9)
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(cf. [41). Z(t) has the further property that Z(s) and Z(t) are independent for
any pair of orthogonal vectors s and t.

There has been little effort so far to generalize the empirical character-
istic function methods to infinite dimensional spaces, perhaps mainly due
to the fact that it is difficult to find genuine examples whereby random
elements of such spaces can be observed. Feuerverger and McDunnough
[8] considered an extension to strictly stationary ergodic time series and
introduced the concept of poly-characteristic functions and their empirical
version. This is, for fixed k, basically the characteristic function of the finite
dimensional random vectors (E), eOr 1,., 0 related to a discrete-time
stationary process 0 = (01,02 .... ).

(;apar in [3] attempted a further generalization to discrete-time non-
stationary processes. Partially observed trajectories of such processes will
yield, in a limiting sense, random elements of certain sequence spaces. In
Sections 2 and 3 we outline the formalism and the basic properties related to
such a generalization.

2. Empirical characteristic functionals
in sequence spaces and related properties

Let E be a real sequence space with a specified topology and let 2E be its
Borel cr-field. The characteristic functional of a probability distribution p on
(E,3 E), is given by

x"(f) := exp(i < f,x >)dW(x),f F

Here F will be

1) the sequence space G if E satisfies E = G* ((.)*: continuous dual)
2) E* if I does not hold.

Some examples of (E, F) pairs would be (RN,R N ), (t1 ,co ), (1-,, 11 ), (L,,, 1q),

(c0 , I, ) etc. (RN : the space of all sequences with finite length, co = Ix G RN
limj Xi = 0•,, 1/p 4- l/q = 1).

If E is reflexive, I and 2 yield the same F. Also for certain E spaces,
the values of X" on G may uniquely determine its values on the whole E*,
(e.g., E = Lt). The canonical projection onto the first n coordinates will
be indicated by 7T. The projection of pa on (R",¾'") and its restriction to
7n;1 (") are denoted by 4,, and t,, respectively. A superscript (.)0 on a
finite sequence will indicate augmentation to an infinite sequence by filling
out the rest of the positions by zero.

Now let 0 be an 7 H -BE measurable mapping of S into E, or more
generally into RN (the space of all real sequences), such that one of the suffi-
cient conditions for the induced probability measure to be concentrated on
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the particular sequence space is satisfied. We may suppose that the random
sequence O(w) is generated by a non-stationary random process or by any
other source which can be observed any number of times independently
under identical conditions. Such observations will yield a double array of
the same form as (1.1), where the rows represent the observed components
of independent random sequences 0, (w) (mn = 1,2 .... ). By assumption,
9 and Em (m - 1,2 .... ) induce the same probability distribution, say ýt,
on (E, DL).

Definition 2.1. The empirical characteristic distribution A associated
with (1. 1) is the random probability measure

in -- 6(7r7'7,,O9()))

in

defined on (E,7Txl'(3i)) and concentrated oni m atoms 7Tn1 7,,EO9(LL), for
(j = II.I.,in). (Thus A,,, := 7E,,An,, is concentrated on m points in R".)

Definition 2.2. The empirical characteristic functional (e.c.fl.) Xi,,, associ-
ated with (1 .1) is defined as:

*,,,(f,w) := exp(i((Tr,f)°,x))A..(W, dx), f I F
fL

The e.c.fl. can alternatively be expressed as:

J'T'J 1 ( 1

where (.,.) denotes the bilinear form of the E, F duality. In the following
Glivenko-Cantelli type theorem Xi, (f) is the characteristic functional of the
projected destribution, i.e.:

X'n'(f) f x~ (7T~f)°,x >) d~i,,(x)

=f exp[i((,,f) - y)lpdy) fe r-F. (2.1)

Theorem 2.3.

i: lim, , n (f) = x"(f), for f C- F. The convergence is uniform on
compact subsets of F if (E,F): (RN,R•)or(1,c0)or(ytq),(p> 1)N
(R N: The space of all sequences with finite length).

ii: Iimn. n.... .,,) = x"(f)a.s., if (E,F) = RN, RN) or if 9 is a.s.
bounded and (E, F) =(co, t, ), (Lp, Lq ), (t1, 11)

iii: The convergence in ii) is uniform on compact subsets of F if (E, F) =
(RN,RoN) or (l, q).
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Proof. [2,3] I
The study of convergence of empirical measures in sequence spaces

and convergence of measures induced by the empirical process create some
difficulty. For X,',, (or A,,,) and 4 are not defined on a common underlying
measurable space. There is a similar situation for the measures induced
by the finite dimensional empirical processes and the distribution of the
limiting process.

In such instances the abstract concept of 'weak convergence along a
projective system', which is outlined in the next section, has proved to be
useful. Alternative treatments via cylindrical measures or set martingales in
the limit can also be given.

3. Weak convergence of probability measures
along a projective system

Following the notation and the terminology of [151, we consider projective
systems of Hausdorff topological spaces of the form

It(0., 7T.13).3 :, E D}

having the projective limit 0 = lim(O. ,1¶c, with continuous canonical

mappings 7T,, : 0 --+ 0la. The right-filtering partially ordered set D and all
other symbols are assumed to have their usual meaning and properties.

In relation with such a projective system we consider two hypotheses:

Hypothesis R1: t;1, (Lx E D) commutes with the operation of forming

the rim, i.e., 7T- 1 (rA) = r(7iT 1 A), where r(A) = A n.
Hypothesis R2: For every 0C E D,7T,2l C D,,, holds, where 13 and 'B

are Borel oa-fields in 0 and 0,, respectively, the former being with
respect to the projective limit topology.

Hypothesis R, is satisfied by many important projective systems in-
cluding those where each tt, (c E D) is an open mapping. (In this case
Hypothesis R1 is actually equivalent to the stronger property 7i;. (bA) =

b(7r;'A)(b(.) = boundary). This would be the case if for instance the pro-
jective limit topology coincides with the product topology.

Hypothesis R2 would be ensured, e.g., if 0 and f0,,(a E D) are Polish
spaces and D and B. are replaced by a-fields of subsets which are measurable
for the completion of probability measures on Borel sets, thus containing
anaytic sets. (cf. [7, pp. 391]).

Definition 3.1. Let TP = {(O-,,naf)a-3 : ox,3 E D} be a projective system
of metrizable spaces with the projective limit Ql = lim~fla, 7T•) furnished

with the projective limit topology and let the a-fields Ba, and 13, in Q., and
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fl respectively, satisfy Hypothesis R2. If OX E D} is a net of probability
measures defined on measurable spaces (f2,, D), o c D, we say that P,
converges weakly along the projective system TP to a probability measure 1

on •B denoted by 4, '-4J, ., if for every Wcontinuity set B E 93

lim 4-. (7r.B) =.(B)

holds.

Note. In the case of a Polish projective limit, 'B and 23, may be chosen as
the a-fiolds obtained by the completion of Borel probability measures ý. and
7c, () rev pectively.

The following version of Alexandroff's second theorem is valid for this
type of convergerce.

Theorem 3.2. Let {(, Ocx E D} be a net of probability measures on a projective
system TP as described in Definition 3.1, satisfying further hypothesis R1. If
o is sufficiently rich, (i.e., 7rTf, = 0f,) and 4 is tight on 0, then the following
are equivalent:

1) w- 4 . Oc ED.

2) Let f E C(f)),13 E D and ifoc E D,oc_ >3, let f I and ff2 be the lifts
of f to 0,, and 0 respectively, (i.e., fI(x) = f(7 ×x), f"(x) = f(7rTOx)).
Then limcx >- 0 1.c(f') = (f').

3) The same conclusion as in 2, C(fQ0) being replaced by the set of
bounded uniformly continuous functions.

4) For c3 D, let F E 1, be a closed subset of Q p, then

lim sup ia(7 F) <, ,(n' F).

5) For E3 D, let G E 3 be an open subset of 0 3, then

lir inf p,(n3 G)>- i(7-G).

Proof. [2]. U
We can also state the following tightness versus relative compactness

type result.

Theorem 3.3. Let the projective system TP as described in Definition 3.1. have
a separable, metrizable projective limit. Further assume that for each C > 0,
there exists a compact subset K, of 0 such that p,(irK,) > 1 - e for every
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ot E D issatisfied bya net {4-11i}ED of probability measures. Then [BL] has a
subnet converging along the projective system T.

Proof. Let be the image of p.•, on 7i- U3, a,i.e., ýita .7T- = o, and let t.t; (Cx E
D) be any set of extensions of po to (0,D3). Such extensions always exist but
may consist of measures which are only finitely additive. On the other hand
0 can be imbedded topologically into a compact metric space 0. For any
-i,, let m., be the measure on 0 defined by mc. (B) = [t, (B (iO) for all Borel

subsets of 0. The net 1,m2,• has a subnet, say 'm.N 'D converging weakly
to a a-additive measure -v on 0. For any index Lx, let C,,, = 7T-I7K_

which is compact in 0. Let 3 be a fixed index, then by the ordinary weak
convergence of measures and the fact that C.,s .:

v(C,J0) >-lim supMN,(C,,3 >- lim sup MN,,(C,,N,)

=limsupPN,(j7NK,) > 1E--.

By considering a sequence e,, ,J 0, this set of inequalities implies along the
same line as in the proof of Theorem 6.7 of [14], that there exists a measure
p on 0 such that -v(B) - .'(B FT 0) for any Borel set B c- 0. Let now F be any
closed subset of Op. There exists a closed set Din 0 such that 7io 1 F D - 0.
As MN. v on 0, we have lim sups MNA(D) : v(D). This is the same
thing as stating lim sup, Lý,, (7rh-'F) < U•-cT 1F). Now for N,, .i:

lim S U P [1 ,• ( 7T -1 F ) = lim S U P PN , ý ( -'7 -IT# N .
a a[

=limsupN,(n,•,F< B, F) F).
N -,

Then by part 3 of Theorem 3.2, P N, i. I

In the definition of convergence along projective systems, measures
can be replaced by measurable mappings. Thus if (S, :, P) is a probability
space, T•a projective system and Uc : S -ý O,(a ýl D) is a net of ";- - '1 33

measurable mappings we say that Uc, converges to an :' ( ' 3 me,aurable

mapping U : S --* 0 along the projective system 'P, and let linm, Ll, '"-':" HL if
the probability measures pia induced by U,, on (f1,,, 3 , converge weakly
along T to the measure induced by U on (0,D).

4. Weak convergence of empirical measures
and processes In the sequence spaces

Returning to the probabilistic scheme and terminology of Section 2, we can
describe the convergence of empirical measures as follows.
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Theorem 4.1. Let L be a probability measure induced on RN by 0 and let
(R11 B', 3,t) and (R",B",r,) extend over all analytic sets (e.g., obtained

by completion). If mi -- oo as n. - oo, then , ... - a.s. along the
projective system T = R(R 71 ,r • ,)T1, .n ,. : t11,2 T N>.

Proof. Let (,rnr = 1,2 .... ) be a set of arbitrary extensions of A,, il,,, from
7T, 1 ('/3B) to 'B RN (such extensions always exist). Since X ...... (f) depend only
on finite dimensional restrictions of measures, except on a null set we have
by Theorem 2.3,

lim exp(i < f,x > (,,W1 , dx) = x"(f), f ý_- R N

By the analogue of Levy-Cramer theorem (cf. [17], Theorem 1.2.8.) A, --4

ita.s. as n -4 oo. If B is a finite dimensional set, then for large n :
7t•tI 7TB - B, ....... (7T, B) = A,,, (BI and the conclusion follows imme-
diately. If B is an infinite dimensional set, it will have no interior with
respect to Tikhonov's topology, thus at(B) - 0. As '7-rT,, B I is a decreasing
sequence of universally measurable sets, letting C -- ', , 1 ,B. we have
B ,2- C C ,E- 1 T 7'-1T,,B B and thus lim u(7• -T, B) ý- !.(C) 0. There

exists a sequence ik' of positive integers and a decreasing sequence 'Ck', of
p.-continuity sets satisfying:

1 ) C k --7T B
2) limk-, aCKO 0

The double limit lim.k . A . ... .. ICk exists and is equal to zero. For
there are positive integers k,, and ne such that for k ý ke and ri - ,, we
have nICO) -ttB)l 

8 : p(Ck) < ' and 1A, .Ck, nICk.' < , there-
fore A,, . Ck, •1 nI B)' - c. But /N, ... Ck) • ,,,, . Ck.J and t(B) -

0. Therefore lim .k . ,\ (Ck 1 0 and this implies A. , ( 1t1,11B)

A,,,,, n,B B 0 C B a.s. I

In order to suppress path dependence of the convergence consider
as random measures, i e., as measurable mappings S - M,,, where M,,

denotes the set of all probability measures on (R", 'B"). Let also the set of all
probability measures on (RN, jN) be denoted by M. Then

Theorem 4.2. For every sequence m, of positive integers tending to infinity

as nt * -xo we have lir, ., A,,,,, .. - A,, where A, : S , M is the
measurable mapping with distribution degenerate at ia t7 M,

I oof. 31 1
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Note. Another viewpoint for the convergence of measures in Theorem 4.1
and Theorem 4.2 could be suggested via the concept of set martingale in the
limit. Let

be a projective system of probability measures having the property of sequen-
tial maximality. It is well-known that with such a system there is associated
a set martingale [15, Section 3.1, Proposition 7]). In parallel to Blake's defini-
tion of a 'weak martingale in the limit' [1], one can introduce the concept of
a 'weak set martingale in the limit' for a system {(O(, E,, ,-v,,, ) : = 1,2, .. ,
of probability spaces if -v,n, 4 Pa, as m -4 oo(a E D), where {Pa, o E D1
is a set martingale with base a E D1. Then Theorem 4.1 can be
rephrased as: {(: ,,,,,Rm,2n) : = 1,2,.... is a set martingale in the
limit with the underlying set martingale f i : nt = 1, 2, ..} which has the base
{7n-1B'• :n=1,2....

Now the empirical process given by (1.5) and (1.6) are modified for
sequence spaces as:

Ym(f) M n(X ,m(7tnf) - X (if)),f E F (4.1)

Znm,(f) := Mf{Ik,,,,(Sn,(7t f))i 2 
- n x I(f)2 }, f E F. (4.2)

These should be regarded as processes ((4.1) is complex-valued and (4.2)
real) with a generalized index set. (Here F is in general a topological vector
space). Like in the ordinary cases, as given by (1.5) and (1.6), the weak
convergence of processes should be restricted to compact subsets. Now if
(E, F) = (RN, RN ), the compact sets in F consist of elements that have their
lengths bounded by a common integer, say d, and their first d coordinates
determining a compact set in Rd. Then for n _> d

Y .. (f = m .. (f) - X :(f)) (4.3)

where f runs over a compact subset K of RNd (set of sequences with lengths
bounded by d). Since for all rt >_ d,k j,,, (f) is essentially the same as the
empirical characteristic function obtained by m independent observations of
the d-long random vector, (4.3) is equivalent to a d-dimensional multivariate
process as outlined in the introduction. In particular if K E Kd, then the
conclusion regarding the weak conergence in C2 (Kd) will be valid under the
condition (1.7). Note that this condition is satisfied uniformly in d if

log' (11 (L ) 112)' "dP(w) < (4.4)

for small c. (cf. [5]).
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Similarly the multivariate results can be applied to the process (4.2)
whenever K =_ Kd C RN = F.

For fixed rn and arbitrary dual pairs (E, F), the process (4.1) (resp.
(4.2)) can be restricted, in view of (4.3) to compact (bounded) subsets of R',
thus converges weakly in C2 (K,)(resp.C(K,)) to the Gaussian processes as
described in the introduction. (In (4.2) X'n is replaced by e- f- ).

The measures induced by the processes Y,, (or Z•,,) are not defined
on a common underlying measurable space, neither do they form an inverse
system since they are not necessarily compatible. We investigate their con-
vergence behavior within the concept of weak convergence along projective
systems as described in Section 3. For the multicubes K, = [-T, T]V, (T > 0),
we define projection mappings -y,,, : C(K, 2 ) -4 C(K,, )((fl < 112) by:

(-Y.,T,2f)(xi,.. X.,,, ) = f(*xl,...x,',,0,..-,--0) Vf E C(K,,,) (4.5)

The mappings -y,, , are continuous and satisfy 7t, 3, 2 o 7IT12, 7T1 , 3',, for

ni < n2 < n.3. (For complex-valued functions y :n r,: C2 (Kn, -) C2 (K,, )).
On the other hand if A is a measure on (C(K2),BefK,2))Y,.,.2 (A) is defined
as the ordinary image measure.

Now reconsider the processes Y,,, and Z,,,, the former being given
by (4.1) and the latter by:

Z,,,n = , - e-'' Qf E F (4.6)

For fixed n. they converge weakly in C(K,) and C2 (Kn) to the centered
Gaussian processes Y"" and Z"" having the covariance structures

E[Y (f)Y (g)] = X(f - g) - )X-g) f, g E F (4.7)

E[Z'" (f)ZI"" (9)] = 4e- E;' f _1-F-;'9"•cosh(T- figi) - T f, g,)2.,•o
1 1

f,g E F (4.8)

provided that conditions (1.7) or (4.4) are satisfied.
Let -v' and -vz be the probability measures representing the distribu-

tions of the limiting processes Y", and Zu" respectively.

Theorem 4.3.

1)

91Y = I((e2 (K,)/13(,(K,V),'Vn,Yn, i 2 )nInn1. n2E N

91z = {(e(K,,),1e( K, 'vZnYn, n2 )nI,; <n;,rn2 E N,

are topological projective systems of Gaussian probability spaces.
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2) The projective limits (C2 (Kj),'1Be2(K_,_vY) and (C(K,,),2B(vK_1,.vZ(

of the projective systems in I exist and are unique. (K.,: product of
infinite copies of [-T, TI).

3) Let either the condition (1.7) (for every r) or (4.4) be satisfied. Then for
any sequence tn such that mr -4 oo as n -4 oo, the process Yn,,, has a
subsequence converging weakly to "vY along the projective systems T'.
Furthermore for such a sequence the process Zm..... has a subsequence
converging weakly to vz along pz.

Proof.

1) Asy,, are continuous, we only need to show that the measures -v,
and "vz are compatible with respect to the mappings Y ,1.. We restrict
the proof to "vn, a similar argument applies to -v<. We have to provez z - 1

"vz = vz,, o y,, ,.i for nr < rn2. The measure on the righthand-side is
obtained by the extension of family of distributions of the type

{£.,(Z1",•: (gi U ),... Zp"" (((s•)}} (4.9)

where f (.) denotes the law of a random vector and

S= ( . 0,. 0) c C(K,1,,
(i = 1.....s~s 1,2 .... ).

But (4.9) is Gaussian and completely determined by the covariance
structure given by (4.8). Also the right-hand side of (4.8) (as well as of
(4.7)) has the property that projections on lesser dimensions yield the
same type of expressions. Thus we have

EIZ'", (((gýZ""- (g1) '=

which implies "vz, and vz ?, o1' are obtained by the extension of
the same family of finite dimensional distributions, hence they should
be equal.

2) Let y, : C(K-) -- C(K,,) be defined as

(y, g)(x) = g(x),g C(K), x ER",

y. verifies the relation Y',, Y ',i, - oYn., for n. < n.2 and has the three
properties: 1) linear; 2) g E C(K.), g # 0 • 3In, such that y,,g # 0;
3) nT M,1(0) = {0}.

Then by [16, Proposition 11, pp. 841 the projective limit topology
of C(K.) has a base of closed neighborhoods consisting of the finite
intersections of the sets y-'(B,.n),c > 0, (n = 1,2,...),B,.n being
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closed balls in C(K,). This is usually coarser than the norm topology
of e(Kjo ). But if V, is a closed ball in the norm topology of C(K, ), as
V, = n- 1-ye1 (B,.r), the projective limit topology generates the same
u-field in C(K• ). Since each measure vz is Radon on (C(Kn), •I.(K,, 1)
and the projective system obviously satisfies the condition of sequential
maximality, the conclusion follows from [15, Theorem 5, pp. 121]. The
proof for the other process is the same.

3) Again restricting our discussion to Z,,,,,, we first note y,,[C(Kj)] =

C(K,), n = 1,2.... is a direct result of Tietze's extension theorem. Let
(-vZ)* be the image of vz on 23n = ,' (Be(K)), i.e.(v) o y = vz.

Since the system in 1) admits a projective limit as given in 2), there

exist u-extensions (vY,)*of (-vz)* to 1
3

C(K. such that (vy)* -4 vz

strongly, i.e., IITvnT)* -vZll -4 0, where the norm denotes the to-
tal variation. (cf. [15, Theorem 8, pp. 134]). Therefore the family
(vy,)* Y , (n,(t = 1,2,...) is tight, implying that given c > 0, there ex-

ists a compact set K, e Det(K,) (which is also compact in the projective

limit topology) such that (vY)*(K,) _> I - '. Let v,.......denote the

measure induced on C(K,•) by the process Z ...... Since v.,In, -4 v as
n -4 oo, in view of nondegeneracy of vz there exists rno such that for
T 1 r-T, Iv ..... (ynKc) - vz(yKc )( < '. On the other hand we have

Vz(-yK,) = (v-Y)*(-y'y,,K,) > (vy)*(K,) > 1 - z. This, along with

the previous inequality implies thatv,..... (,y, Kk) _> I - c, for rn • nre.
Now the conclusion follows from Theorem 3.3. A parallel argument
applies to the process Y,,.

I

Remark 4.4. It can be shown that Hypothesis R, of Theorems 3.2 and 3.3 is
verified for the above projective systems. Hypothesis R2 is assumed to have

been taken care of as in Theorem 4.1.

Remark 4.5. Without the null hypothesis on normality, the limiting distri-
butions vI of the processes Z,,r will not in general form a projective system

with v,,, n. as functional morphisms. For instance, for arbitrary t,, distri-

butions and under some additional assumptions of independence and finite
fourth moments, v- is found to be Gaussian on C(K,) with the following

covariances (cf. [6]):

E[Z"- (f)Zý'" (g)] = 2Re{x (-f)x•(-g)p(f, g) + X" (f)x,,(-g)p(-f, g)

f,g ERn



{ apar -530

where
P(f, g) =xnl (f + g) - XT'(M)n(g)

I
+ -{fV2XP(f)VX,"(g) + gV2x,(g)Vx,(f)

+ x(jg)Ff(Vxn(g)] +xnMf)[gVx?(g)]} +
It is clear that taking projections will not give, in the presence of Laplacian
factors, the covariance structure of lower dimensions.

5. On inference problems

In view of the convergence of characteristic function(al)s and weak conver-
gence properties of the related processes, different functionals of empirical
processes lend themselves as potential statistics in inference problems. Some
examples are:

1) Univariate distributions

a) For testing the symmetry about the origin in univariate distri-
butions, the statistic Tm= 'fR[IrTMk lm(t)12 dG(t) is suggested [9].
Here G is taken to be a distribution function symmetric about
the origin. When the center of symmetry is specified, Tm can be
modified as inf f [lIM,{e , t X1,f (t)}] 2 dG(t).

b) For simple goodness of fit Rm = V/mmax{IlkIm(ti) - Xo(tj )l, =

1,..., s}, where X0 is a specified univariate characteristic func-
tion, is studied in [101. A Cramer-von Mises-type statistic M, =

tJf_ oc , (t) - X0(t)12 dw(t), with w being some weight func-
tion on the line, can be used for the same purpose 1111.

c) For testing normality (with some mean and variance) in one
dimension, Murota-Takeuchi [131 proposes Zm(t),(n = 1),
(cf. (1.6)), evaluated at some point selected in an interval [-T, Ti,
i.e., Zm(t) = v/{tk•,m(•,)I2 - e-t2 }.

2) Multivariate distributions

a) K-sample homogeneity: Let 0 .... , j =1,., K, K >_ I be
a set of K independent observations with sizes rml, ... MrtK of K n-
dimensional random vectors E (1 1,... 0(K) with corresponding
characteristic functions X (t).... x(K)(t). Let k$m,(t) be the

empirical characteristic function of the j-th sample. Then the
characteristic homogeneity process

K

SNM(t) = ajNbV/m (t)
j 1



{ 531 Empirical characteristic functional analysis and inference in sequence spaces }

where N = (n 1 ,". ,i) and aj(N) are properly selected con-
stants, can be used to test homogeneity [5).

b) Independence: For

I i> 2, S.m(t) = V-/((nXTm (t) - 17 Xnm,k(tk)),

k=1
t = (t! ..... trt),

(the empirical characteristic independence process) is proposed
to test the independence of the components of 9 .(iknm.k(tk)
XT,,(0, tk,0): the empirical characteristic function of the k-th
components) [5].

c) Testing for normality in arbitrary dimensions: Various extensions
of rI-dimensional Murota-Takeuchi statistic, as given by (1.6) or
(1.8), can be proposed.

i) Consider nonzero vectors tl,..-,tL in a neighborhood
of the origin, such that the L x L matrix [Pt,,t•] be non-
singular. (Ps.t is given by (1.9)). Then the quadratic
form Q. = Qm(tv,..-,tL) = z'ImR-'z,... where z,, =
(Zm (tl),-.. ZT(tL)) with an asymptotic chi-square distri-
bution of L degrees of freedom under the null-hypothesis,
can be used to test normality

ii) For nonzero pairwise orthogonal TI-dimensional vectors
tl,'",tn

Nj = max{IZm(t )I,..., IZ,(tn)I}l

forms another extension of the Murota-Takeuchi statistic.
iii)

M(')(T)=- sup IZ,(t)l
tEl-T,TT]

sup IlXnm(Strnt)I2 - e- tI I
tEl-TTI"

is a refinement of ii. Procedures to estimate or approximate
the criticdl tail values of ii and iii are suggested in [6].

Any kind of inferential study regarding the unkown distributions on se-
quence spaces, such as the distribution induced by a non-stationary process
has to be carried out in finite dimensions, with some large TI. The rationale
behind doing this by utilizing the empirical characteristic functionals and
the related processes, is provided by Theorems 2.3 and 4.3. According to
Theorem 2.3, lim,,-, ×(f) = X" (f), f E F and the convergence is uniform
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on compact subsets of F for certain dual pairs (E, F), including (.,, L,). On
compact subsets of t q H61der's inequality yields:

Ix'n(M)- X1(f M I lexpli[M( J xk l)•-ldp(x) (5.1)

lq k-:n~I

for some constant M > 0. (Similar inequalities hold for other dualities).
In some special cases (5.1) can be utilized (at least in principle) to

approximate X"(f) uniformly on compact subsets of F. Two such cases
would be:

1) The image of 0 in 1, is almost surely contained in some particular
compact set, e.g., subsets of the type KMk = {x : X x tp, Ixnjtk <

M,rt=1,2,.... -k>1}
2) p is a Gaussian distribution with a given covariance operator. If for

some no,n> r n_ T Ix'(f) - x"(f) < c, then functionals of the empir-
ical processes indexed by Rno and given under 1 and 2 above, can be
used for different inference problems.

The following iterated logarithm result [41 may give a clue for the right
sample size in each dimension:

lir sup ( M sup IXnni(t) - Xn(t) = K a.s.
n .. (21oglogm I [-T.1TI",

with K = sup' sup Jk(t)l : ., where X,, is the generalized Finkel-
t EI-T, Ij"

stein set corresponding to distribution .,, which has the characteristic func-
tion X (t).

For testing normality with an arbitrary covariance operator, the gener-
alized Murota-Takeuchi statistic of 2-c-i as applied to I-T, T1" will be suitable.
In this regard, a sequential scheme of tests of normality in increasing num-
ber of dimensions by using the expansive set of data given by (1.1) can also
considered. The acceptance and rejection of the hyptothesis of normality in
the sequence space should be based, in some way, on the length of runs of
acceptance and rejection in finite dimensional tests. However one should
expect a substantial difficulty in introducing measures of performance for
such a test.
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i
9 We wish to look to using probabilistic methods in what some may view
as the "strange new" mathematics. If nature uses probability in quantum
physics, then why shouldn't mathematicians? The possibilities abound.
Perhaps "undecidable propositions" should be looked at as statements with
probabilistic truth values, perhaps "NP-complete" problems should be at-
tacked probabilistically, and perhaps "chaos" is merely the picture of prob-
ability in what used to be thought of as "deterministic reality."

Or perhaps this is all nutty, but let's have a look.

1. Introduction

The dawn of Quantum Theory shook the scientific world with the stunning
message that the elementary particles were really not stuff at all, but "pieces
of probability." Believe it or not, understand it or not, this description of
the elementary particles as having only a probabilistic reality is a highly
functional and useful picture of the subatomic universe. It works!

The great Albert Einstein never "believed" this probability picture of
matter, but that didn't stop his using it with incredible effectiveness. Indeed,
it was for this that he earned his Nobel prize: the prize was given him for
the photoelectric effect, not for the monumental relativity theory.

So, this second 20th-century revolution in physics carried the message
that the truth in science was more "fuzzy" than had been thought. The first
revolution-relativity theory-merely said that we had been mistaken in our
picture of truth, but did not deny the sharpness of it. Truth under Einstein
was just as sharp and hard-edged as it had been under Newton. But truth
under Bohr and the quantum theory gang was different, fuzzy, soft-edged--
and very involved with probability theory. This is not to say that physicists
were unable to get answers to problems. A whole new mechanics-quantum
mechanics-evolved and answers continued to be cranked out. A new atti-
tude, but business as usual.

535

J. S. Byrnes et al. (eds.), Probabilistic and Stochastic Methods in Analysis, with Applications, 535-542.
0 1992 Kluwer Academic Publishers. Printed in the Netherlands.



Neuman 536

This new attitude seemed to be everywhere. The great writer Vir-
ginia Woolf made an important discovery about one of her characters, a
Mrs. Brown. "My name is Brown," said she, "catch me if you can." The im-
portant discovery of Woolf was that you can't! Mere words were insufficient
to catch anything as overwhelming as a human character. But Woolf's ack-
nowledgement of this impossibility was a tremendous breakthrough! She
showed us the infinitude of the human soul. A powerful message!

Even the pristine Queen-Mathematics herself-succumbed to new
order. Old things we counted on gave way to the new fuzzier ones. One
old thing that gave way, under Godel, was decidability. The cherished be-
lief had always been that a meaningful mathematical statement was either
provably true or provably false. This belief, however attractive and "con-
vincing," simply had to be given up when an example was produced which
was meaningful, but not provably true and not provably false! When this ex-
ample was translated into its arithmetical counterpart, it turned out to be so
convoluted and endlessly "boring" that mathematicians simply laughed and
scoffed. "Oh, who cares about that silly isolated counterexample," they said.

You'd think that mathematicians would know better! You'd think
they learned their lesson from Pythagoras. The irrationality of the "silly
number" N/2- also appeared to be an isolated example. Now we know the
irrationals are all about us; they are in every sense more numerous than the
rationals. No, no, mathematicians should never make fun of the isolated
counterexample. It will-like v/2 did, and like the GCdel undecidable-
emerge as the overwhehning norm. Yes, it is now known that most statements
are undecidable. Our cherished provably true (or provably false) statements
are the silly ones, being in the infinitesimal minority.

Godel's example-aside from its 100 pages of very ponderous details
which show that that it is a meaningful statement (in the system of integers)-
is reducible to a Kindergarten version which the reader might enjoy. He also
would probably be horrified by it because it appears dangerously close to
the obviously contradictory and senseless childhood joke, "This statement
is false." But this close resemblance is really not so significant. The words
"true" or "false" are not really definable in the system, whereas the word
"provable," meaning having a proof, is definable-as a moment's thought
(or 100 pages of genuine mathematics) will convince you. At any rate, our
Kindergarten G6del statement is:

IThis statement is unprovable.

which we have "framed" for reference's sake. We will call it the "statement
in the frame" (SIF) and at other times we will read it and observe what it says.
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So, now for the undecidability proof:
STEP 1 Suppose the SIF had a proof. Then it would be true, but taking it
out of its frame, it would be unprovable (because that's what it says). This
is a contradiction! So, it cannot have a proof.
STEP 2 We now know from step 1 that the SIF cannot have a proof, so
taking it out of its frame, we see that it is making a true statement. So, it
is true.
STEP 3 Since the SIF is true, by step 2, we may conclude that the SIF cannot
be proven false.

Okay then, steps 1 through 3 do the job. Step 1 shows that the SIF
cannot be proved true and step 3 shows that the SIF cannot be proved false.
So, indeed the SIF is an undecidable proposition!

A general underlying theme seems to run in the examples thus far: that
the sharp, hard-edged notion of truth isn't adequate any longer. Indeed, it
never was. Elementary particles existed long before their subtleties were
recorded by the quantum theorists, Mrs. Browns were indescribable long
before Virginia Woolf pointed it out to us, and undecidable propositions
were always so.

The probability aspect of this "fuzz" is not really apparent, except
perhaps in quantum theory, where even Einstein had some doubts. But let
us turn now to other examples where probability is more obvious.

There is much current interest in J.P. Kahane's construction of the ultra-
flat polynomials. He answers thereby many questions of Hardy, Littlewood,
and Erdbs by a clever use of probability methods in Fourier analysis. At any
rate, Kahane produced a polynomial of each degree with certain remarkable
properties; the word "produced" must be emphasized because his methods
involve probabilistic, and therefore not explicit, constructions. To some of
us, this nonexplicitness is quite acceptable-and in fact quite beautiful. It
is very exciting to prove the existence of something which nobody has the
vaguest notion of how to locate!

Thus, a real number exists which is "normal" in every base. Expanded
in base 2, it has asymptotically as many O's as it does I's; in base 3, as many
O's as it does l's or 2's; in base 4, as many O's as it does I's, 2's, or 3's, and so
on. Such a real number exists because almost all numbers have this property
(the probability argument!), but so far no such number has been explicitly
produced. It is even conceivable that no such explicit number can ever be
produced. Undoubtedly, numbers such as 7T or v2 are normal in every base,
but it may well be undecidable that they are so.

Probability methods are in fact the direct successors of counting argu-
ments and the nonconstructive nature of these are often quite amusing. For
instance, one can prove that there are two people in New York City with the
same number of hairs on their heads (there are more than 7,000,000 people
there and are less than 200,000 hairs on any head). This counting argument is
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an excellent example of a situation where explicit construction is impossible.
Even the "totally bald" heads have a few hundred tiny hairs on them and
the sought-after couple is a time-varying function, hairs constantly grow-
ing in and falling out. Explicit construction is impossible, but the counting
argument is absolutely convincing!

Erd6s loves to stand up in a crowded room and boldly announce:
"There are two people here who have exactly the same number of friends in
this room." This proof, albeit a counting argument, has a slight twist to it
(a slight nontriviality, of course, coming from Erd6s), but again it is not at
all based on any explicit knowledge of the people involved. We know much
more than we know!

So, sometimes the probability argument is a pure delight and we
couldn't desire any more. Who cares, after all, which two New Yorkers
have the same number of hairs on their heads? But there are times when we
do desire more: we would love to see an explicit display of a Kahane ultraflat
polynomial-and at least one explicit example of a normal number.

There is, however, one area in mathematics where the probabilistic is
the only choice, where any constructive choice is, by its very nature, coun-
terindicated. This is in game theory, where much of the battle is to make
unpredictable moves!

In Wilson's very nice book, The Selfish Gene, a remarkable connection
is disclosed between game theory and evolution-another demonstration of
how our very existence is connected to probabilistic mathematics. Williams
points to an actual species of rodents which are competitive for their food
supply. The game is: to fight or not to fight. If both participants elect to
not fight (i.e., they are pacifists), then the food is shared. If one decides
to fight (i.e., is a warrior) and the other decides to not fight, then the food
goes entirely to the warrior. And if both decide to fight, then both lose by
being hurt in their battle. Note then that this is not a zero-sum game, but
nonetheless there is a solution. With the appropriate numerical parameters
estimated, this solution turns out to be roughly: be a warrior 32% of the
time, and be a pacifist 68% of the time. Remember, we are describing an
actual species and actual parameters. What is amazing is that in this species
it is observed that 32% of the members are warriors and 68% are pacifists!
No individual varies his play-the species as a whole solved the game.
Evolution does probability!

2. Probability In our thought processes

Whether or not we are conscious of it, our reasoning is at least partially
subject to randomness. The longer and more complicated a proof, the less
we really do believe it. Intuitively, we don't fully (i.e., with probability p I 1)
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believe any single step, so that a combination of, e.g., 100 steps has only a
probability p° 0 0-and this might be quite far. 'om 1.

My favorite example of this built-in probability-in-reasoning is the
famous short story of Robert Louis Stevenson's, "The Imp in the Bottle". Ac-
cording to the story, there is an Imp, a magical wish-granting genie, trapped
inside a bottle. If you buy this bottle, you own the Imp and it will grant you
wealth, love, and power. The catch is that you must sell it before you die for
strictly less than you bought it for, or else you are doomed to roast in hell for
all eternity.

To make this precise, let us mandate that the purchase price of the Imp
must be a positive integer number of cents, American funds.
SO: Would you buy it for 11.? No, of course not. You could not ever sell it
for less than you bought it for; you would surely lose!
NEXT. Would you buy it for 20? (Now the thought process is slower.) But
again the answer is "No." By the previous argument you know that nobody
would ever buy it from you for lV. So, indeed you still could never sell it
before you die.

The mathematician sees the obvious induction in the above and (sort
of) agrees that therefore he would never buy the Imp for any nv.
BUT." I would surely buy this Imp for $1,000.00-and feel totally sure of
selling it for, say, $999.00.

Nobody really believes a proof of 100,000 steps! (And rightfully so, if
nobody believes a proof of 99,900 steps!)

(In the actual Stevenson tale, the protagonist buys the bottle for (the
equivalent of) 2V and is able to sell it to a drunken sailor for 11. The sailor
is delighted, since he knows that he is already damned to spend eternity
in hell!)

There is another example of lack of belief in a long proof. This is the
infamous four-color problem, which has been solved by a computer. A
computer proof (?) based on firings-and perhaps misfirings-of electrons?
Why should I believe such a proof, especially this proof which has had to be
"repaired" several times when errors were found?

These are all valid objections, but then again are firings and misfirings
of electrons in a machine any less convincing than firings or misfirines of
neurons in a human brain? Are any long proofs by a computer or from a
person totally believable? Or are they all just probable?

Are there any mathematical truths, or only things of probability 1 -
10-100? Perhaps anything with probability > 1 - 10-100 is as true as you
can ever get.

So, truth is like elementary particles. It isn't stuff at all, but only proba-
bility. Yes, Mr. Einstein, not only does God play dice, God is dice!
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3. P = NP?

We hinted at the "mentality" of the computer in connection with the four-
color problem, but major questions remain: Does a computer have mental-
ity? Does it have consciousness? Does it have strokes of genius? This last
question has been formalized into the well-known P = NP problem. In sim-
plified nontechnical terms, this problem exemplifies the familiar situation in
which we say to ourselves, "Oh, of course; why didn't I think of that?" It is
the situation where an answer to a question is so easy to check that we feel
that it should have been easy to find.

(Is 4294967297 composite? Yes, it's divisible by 641. Oh, why didn't I
see that? I don't know Mr. Fermat you should have.)

At any rate, this is the P = NP problem. Can all easily checked answers
to a question be easily discovered?

The thought process we want is a little like: "Why don't I try ... Oh,
of course, it works!" In short, if we guarantee the "Oh, of course, it works,"
then all we need supply is the "Why don't I try..." but that's the genius part;
that's the flash of the idea. There seems little reason to believe that the hunch
presents itself to us just because it will be easy to check-except that we have
all seen it happen and too often to consider it an accident. It is with great
delight that we witness strokes of genius-even when (as is usual) they are
from others.

"* When a 12-year-old boy makes a queen sacrifice and wins a champi-
onship chess game, all the world rejoices (well, except for the one who

lost to him)!
"* When Sue Shapiro (a friend of the family) unerringly picks out the

four-leaf clover from a field of clover, the witnesses are both stunned
and delighted.

"* When that little boy on television solves all those complicated mazes
with no apparent effort, we are again quite delighted.

These are perfect examples of soiutions which are easy to check. Once
made, Bobby Fischer's brilliancy of the century is quickly seen to force a
checkmate. Once drawn, a successful maze path is also quickly seen to
succeed. A four-leaf clover is a palpable reality. There are, of course, many
other examples. There seem to be very special people with very special
talents, but what is being suggested is that yes, P = NP-that any question
which has an easily checked solution also has an easy path to that solution
(the discovery process being available to a special-purpose mind).

And now comes the fuzziness. We seem to be on the brink of another
undecidability. If indeed P = NP, we undoubtedly could never prove it. For
a proof would involve a production of an algorithm (the proof itself), and
such an algorithm could be programmed into a computer. The computer
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could have strokes of genius! The great boon to mankind! Of course, this is
the reason for the great interest in the P = NP problem in the first place.

Well, why not? It's about time that something good happened to
mankind. Why not have the computer become a true thinker? ('tis a con-
summation devoutly to be wished)

The negative answer, however, is very convincingly put forth in Pen-
rose's marvelous book, The Emperor's New Mind. Penrose's thesis is simply
that computers are not-and never can become--conscious, and that there-
fore they can never become true thinkers.

We seem to be led to the conclusion that P = NP is undecidable. It is,
as with the SIF of Godel, true (because of the Bobby Fischers), but unprovable
(because of Penrose's thesis).

4. Chaos: The third 20th century revolution in science

The message of this paper and of this "new science" is that we are living not
in a universe of sharp, clear realities, but rather in one of probabilities (what
we have been calling fuzzy instead of what we have been calling sharp). The
germ of this new attitude came from the discovery of huge discontinuities
in nature: the butterfly effect, in popular terminology. The scenario is that
of a butterfly flapping its wings in Tokyo causing a slight dislocation of
air particles, thereby causing a slight motion of leaves on a tree, and so on
and on ... , ending in a cyclone somewhere. The point is that such a slight
perturbation could-and often does-cause large changes at large distances.
The mathematical notion of discontinuity is certainly not a new one. What
is new is the realization that discontinuity is prevalent in nature.

If indeed the flutter of a butterfly's wing in Tokyo could cause a cyclone
in Timbuktu, then we must conclude that that cyclone's cause was probability.
It was not a large physical force that caused the butterfly to wave its wings,
but only a random (probability!) whim. The butterfly effect was possibly
first discovered by Edward Lorentz, who was doing some computer experi-
ments in meteorology. Lorentz would feed into a computer some descriptive
weather parameters and then read out some weather predictions. Quite by
accident, he fed in some parameters which differed only very slightly from
the ones he had used the week before, and was shocked to find that the
new week's predictions were markedly different from the earlier ones. "I
only changed the parameters in the fourth decimal place; no instruments
ever detect better than that." If such "unnoticeable" errors produce such
an enormous cumulative effect, then we have been all wrong looking for a
sensible method of weather prediction! It doesn't even exist in nature!

Lorentz went on to build his famous mathematical model, which
showed the truly explosive property of the iterative procedures present in
nature. Lorentz's finding was not restricted just to meteorology. Similar
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phenomena were discovered in, e.g., the gypsy moth population, shapes
of clouds, the intertwining of blood vessels, heart troubles-even the stock
market variations. The word spread like wildfire! All is discontinuity, and
hence all is probability.
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R Positive-definite functions or distributions appear naturally in the theory
of homogeneous random fields and, in particular, in the definition of their
correlation functionals. We consider the problem of extending a radial
positive-definite function, or distribution, defined in a ball centered at the
origin of 91' to one defined in the whole space. Such an extension was
shown to exist by W. Rudin (in the case of a continuous function) and,
later on, by A.E. Nussbaum (in the case of a distribution). Our goal in this
paper is to explain how the maximum entropy principle can be used to
obtain explicit solutions of the n-dimensional radial extension problem via
a reduction to a one-dimensional one. We also investigate the question of
uniqueness of the extension.

1. Notation

We will denote by 9R' the nT-dimensional Euclidean space and by 9V its dual
group. Iff -is a function defined on 91', we will denote by f the function
defined by f(x) = f(-x), for x in 9M'. If f : 9M - CO is a function, we denote its
Fourier transform by for 31f. It is defined by

fky) = (!Tif)(-Y) = e-2 7 ix f (Y) dx, -Y E9.

If f : 9R" (t , its Fourier transform 9T,f: 9:J" - C is defined by

(37f)0 ) J91 e- 2 i("'u f(y) dy, & E Jin.
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Note that we reserve the notation f for functions f defined on 9q. If g : ' -
T, its inverse Fourier transform is

(3-n-,g)(x) = C e2'ixL) g(Q df, x q 9?".

Of course, as usual, the Fourier transform is first defined for functions
in the Schwartz class 8(91') and then, by duality, to the class 8'(91'f) of
tempered distributions. We will denote by the bracket (T, 4)) the duality
between a distribution (or a generalized random field) T and a test function
4). C,(D) is the class of infinitely differentiable functions with compact
support in 0. B,(R) and Sn are defined by B,(R) = {x c 9i,Jx < Rý
and Sn= {. E 9",1.1 1}. We also denote by duT the (ni - 1)-dimensional
Lebesgue measure on S, and, if 4) is a function on 911, we define its spherical
average (V° by the formula

(V1(x) = - S 4(Ixloa) du, x c 91T.

2. Introduction

Let us consider a complex-valued generalized random field O defined on 91".
If we pick anyi..., E C'(911), then(,)). (0, 4,) are random
variables with a well-defined joint probability distribution. We will assume
in the following that, forall 4) E Co(91"), the expected value E( (0D,4)) =0
and also that E( I(q), ý) 12 ) < oo. The generalized random field $D is called
homogeneous if, for any c)l...k £ C(I9"n) and any point h • 91",
the k-dimensional random variables! ((l,4)b).((I,4)k) (and ( (qL, ( +
h .)) . (I

), Obk(. + h)) ) are identically distributed. This is, of course, the
nT-dimensional analogue of a generalized stationary stochastic process (see
[9, 16, 17] for more details). The correlation functional of the generalized
random variable (D is the sesquilinear form B defined on C' (9?") x C'• (91")
by the formula

V01,02 E C,,(9?"), B()i, 4) = E( (0,0 1)(0,0)2 )). (2.1)

In the case where 0 is homogeneous, the sesquilinear form B is translation
invariant and one can show the existence of a unique distribution (in the
sense of Schwartz) Q E 8'(91")such that

V ) 1,() 2 E C,)(9"),B1()), 4 2 ) = (Q, 41. 4f2). (2.2)

The distribution Q is clearly positive-definite on 91n, i.e., for all 4) E CO (91"),
we have (Q,4)ij) 0 since

(Q,) E4) = E(t(q),())12 ) > 0.
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Conversely, it is known that every positive-definite distribution Q E 8 (91'f)
arises in the definition of the correlation functional of some generalized
homogeneous random field (D. Thus, Q controls the "second-order theory"
of 4) and, in fact, if 4) is Gaussian, it is completely determined by Q. By
the Bochner-Schwartz theorem [15], the Fourier transform of Q is a positive
tempered measure i on 9V', i.e., L > 0 and for some integer m > 0, we have

f (1 + 112)- m d(ý}) <

This yields the following representation for the correlation functional:

4) ,,ý2 c C' (91'), B• (4 2) = T. (•,,I)W(3.) 2 dp()

The measure ý± is called the spectral measure of the generalized random field
(D. In the case where the positive-definite distribution Q associated with 0
is radial, i.e., if

VP E C-(9t1), (Q, 4) = (Q, 4o),

where (P° is the spherical average of P, we say that D is homogeneous and
isotropic.

In the following, we will be dealing with a basic extension problem: we
will assume that the values of the correlation functional of a homogeneous
and isotropic random field, B(4p,,4 2 ), are only known to us when 1)1,02
are supported in some finite ball centered at the origin, and we will try to
construct explicitely spectral measures consistent with the given correlation
data. We will also look at the question as to when a spectral measure
consistent with the given correlation data is unique and explain the relation
with the concept of maximum entropy.

3. Extension of distribution positive-definite in a ball

We need the following definition.

Definition 3.1. Let R be such that 0 < R _< oo and suppose that Q is a
distribution (in the sense of Schwartz) on B,, (R). We say that Q is positive-
definite onBn (R) if

V)4E Coo{B,(R/2)), (Q,4*•) >0 (3.1)

In that case, we will write Q > 0 on B,(R).
Let us remark that if Q is actually a continuous function on B,, (R) (i.e.,

4) is a "standard" homogeneous random field), (3.1) is equivalent to

T Q(x,, - X0 &i ci, 0
'a
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forall xl . .. xk E B,(R/2),all .&..- k E C,andall k>_ 1.
The basic extension problem stated above can be rephrased in terms

of distributions in the following way: given Q > 0 on B,(R), we try to
construct Q1 >> 0 on 9q' such that QI = Q on B,, (R), or, equivalently, we try
to find a positive measure ýi E 8'(9q') such that 3"(4) = Q on B,,(R). In
the case n = 1, M.G. Krein [10] showed that such an extension was always
possible. However, when rt > 1 and B,(R) is replaced by an n-dimensional
cube centered at the origin, the extension problem does not always have
a solution, as was shown by W. Rudin [13]. Nevertheless, it was shown,
again by W. Rudin [141, that if Q > 0 on B,(R) is a radial continuous func-
tion, the extension was always possible. Rudin's work was later generalized
by A.E. Nussbaum [12] to include the case of radial positive-definite dis-
tributions. As far as the uniqueness problem is concerned, necessary and
sufficient conditions were given in the one-dimensional case by M.G. Krein
[10] and E.J. Akutowicz (111; see also [2)) for continuous functions, but they
are not easy to check in practice. Recently, the author [8] found another nec-
essary and sufficient condition for nonuniqueness in the one-dimensional
case, given in terms of the continuity of a linear functional, which is valid
for distributions.

Theorem 3.2. Let T > 0 on (-R, R). Then the extension problem for T has a
nonunique solution if and only if, for some A E T, with lm A $ 0, there exists
C > 0 such that

V 0oE C'((0, R)), IkP(N)I < C [(T, (p . ]q 2 (3.2)

It can be shown that if (3.2) holds for some A with Im A 7 0, then, in fact,
it holds for all A E C (with the constant C dependent on A). Using this fact,
one can extend the definition of the Fourier transform to the completion of
C0 ((0, R)) with respect to the norm

SIiVll = (0

defined for all (p E C'((0, R)). If we denote by H that completion, then the
Fourier transform of an element u E H, denoted by fi, is an entire analytic
function of exponential type less than or equal to 27tR. Of course, H is a
Hilbert space with inner product defined for the elements (p, * E Co ((0, R))
by [ po, i I = (T, o* 4') and extended by continuity to all of H. It is immediate
that if S > 0 on 9q and S = T on (-R, R), then

[p, 1 y)'()d L()

for all ýo,4' E Co((0, R)) where ý = S and this integral representation of the
inner product in H extends immediately to all of H. It turns out that the
uniqueness problem is closely related to the notion of entropy.
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Definition 3.3. Let t > 0 be a tempered measure on 9t with i = w + ý-,
where w E Lo. (ýt) and ps is singular. Then i is said to have finite entropy if

r logw(y) dy > -00.
1 +y

2

One can show (see [81) that if i is a measure with finite entropy and
9- (ýL) = T on k-R, R), then the extension problem for T always has more
than one solution. Conversely, if the extension is nonunique, there exist
positive-definite extensions whose Fourier transforms are measures with fi-
nite entropy and, in fact, the entropy maximizers corresponding to certain
logarithmic integrals depending on the complex parameter A can be com-
puted explicitly. More precisely, if A E f and Im A > 0, let us denote by uA
the unique element of H satisfying

VqP E CO ((0,R)), 4(p) = [0,uA]. (3.3)

It can be shown that i.x does not vanish on the real axis and thus one can
define the weight v\ by the formula

Vy E J1, VA(y) = lIMA I\12l(3.i2 .

7TIUt,\ey)j12 A-y12  (.4

We have the following theorem.

Theorem 3.4. Let T > 0 on k-), R1 satisly (3.2) and, if h1A 3- , let VA

be the weight defined by (3.3) and (3.4). Then vA E S'(3), 1--1v\ = T on
(-R, R), and, furthermore, if ý. > 0 is any measure in 8'(9I) with absolutely
continuous part w and f•T 1 ý. = T on (-R, R), we have the entropy inequality

ImA f logw(Y) dy < f lm logv\(Y} dy
IT I9•1-A12 d Y 7t IA - y12 d

with equality if and only if .I = v\.

This theorem was proved in [8]. A version of it was proved inde-
pendently by H. Dym (see [7]), but in the case of matrix-valued functions
and with stronger assumptions on T. Let us mention here that the concept of
maximum entropy in connection with the extension problem was introduced
by J.P. Burg (U5]; see also [3, 111) in the discrete case and by J. Chover [6] in
the continuous one. Another interesting version of the entropy inequality
stated above can be found in [4].
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4. Higher dimension: the radial case

As mentioned earlier, the n-dimensional extension problem was solved in
the radial case by W. Rudin [14] for continuous positive-definite functions
on Bn (R) and by A.E. Nussbaum [12] for positive-definite distributions on
B,(R). However, the existence of the extension is obtained by Rudin via
a Hahn-Banach argument and by Nussbaum via an abstract spectral theo-
rem in nuclear spaces. This, of course, makes it difficult to obtain explicit
formulas for possible extensions. Since such formulas are available in the
one-dimensional case (by the maximum entropy method, for example), it is
of practical interest to try to reduce the study of the n-dimensional radial
case, which is essentially "one-dimensional," to the one-dimensional one. It
turns out that such a reduction is possible and an important ingredient for
doing so is the following lemma used by W. Rudin in [14].

Lemma 4.1 (W. Rudin). Let 4) E C'(B,(R)) with 4) radial and suppose
that T-n(O >_ 0. Then there exist a sequence {ckJ with (k E C'(B,,(R/2))
such that

S) - (4.1)
k

in the sense of convergence in C- (B,, (R)).

Remark 4.2. The 4bk's in the previous lemma are not radial in general.
Lemma 4.1 is the most technical part of Rudin's proof of the existence of the
extension in the radial case and its proof uses the Hadamard factorization
theorem. Rudin only mentions the uniform convergence of the series in (4. 1)
(since this is all he needs), but the convergence in C' (B, (R)) follows easily
from his argument.

Rudin's lemma will allow us to associate with any radial distribution
Q > 0 on B,, (R) an even one-dimensional distribution T > 0 on (-R, R).

Lemma 4.3. Let Q > 0 on B,,(R) be radial. Then the distribution T defined

on (-R, R) by the formula

Vq C ,((-R,R)), (J, p) = (Q,.X(p), (4.2)

where
XW = g-n [ W(I1) + (-HI)]

is even and positive-definite on (-R, R).

Proof. Since, by the Paley-Wiener theorem (see (151), 0 is the restriction to
9t of an entire function of exponential type less than 27tR, it follows easily
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that the function ip(j.) = [(~iLj + 0(-I.I))/2 for •. E 9ýn, is the restriction
to jtn of an entire function of exponential type less than 2irR defined on
Cn. Hence, by the Paley-Wiener theorem again, X~p belongs to Co (B, (R))
and (4.2) is well defined. It is also easily checked that the mapping X9
C((-R,R)) ,-- CI(B,(R)) is continuous. Thus (4.2) defines a distribution
T on (-R,R) which is clearly even. Let us show that T > 0 on (-R,R). If

0 C-((0, R)),we have
.nX{o * •) = [P(11& + 1(012•- -IL1)] /2 >0

and thus, by Lemma 4.1, there exists a sequence { in Co'IB,(R/2)) such
that X(* * = * F- -- k in the sense of convergence of test functions in

C (B,(R)). Therefore,

(T,p,•) (QK(P *,4i) = Q(QcIk **k) (0,
k

which proves the lemma. I
Our next goal is to solve the extension problem for Q, taking for granted

that we can do it for T. We need to introduce the following definition.

Definition 4.4. In the following, we will denote by 0 a measurable subset
of S,, having the property that

u C- 0 if and only if -u (7) (4.3)

for a.e.(du) u : S,,. We define the function sign(2 by sign12 (0) = 0 and, if
L #0, sign,,(L.) = I for -/I&I c (Q, and sign,,(f) = -1 for 4/i l 0.

Theorem 4.5. Let R > 0, let Q > 0 on B,(R) be radial and consider the
distribution T > 0 on (-R, R) defined by (4.2). Suppose that the positive
measure -v E 8'(0) satisfies 'T,-'-v = TI on (-R,R). Then, the measure

I. E 8'1(n) defined by the formula

VpE C C(-) 1"),(4, ) = IJ,[21S,,I-'1  t (ra) du d-v(r) (4.4)

satisfies 3,--,i = Q on B,,(R).

Proof. We first remark that if pý E C,•(B,(R)), it u c S,,, and if we denote

by dS the (r - 1)-dimensional Lebesgue measure on the hyperplane ,u E
9R', (or, u) = 01, the function (0a defined by

Vt E 9R, 4),(t) = (crt + u) dS((u),

(0,u) 0
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belongs to Coo ((-R, R)). Furthermore, it follows easily from Fubini's theo-
rem that x,.(r) = (37,,0) (rT), for all T e 9A, and it is clear that 'to =

Hence, we have

J(37k() (F-) d4(&) =2 ISTV 1 J [f (37.4) (rca) do]d-~r

z21SmVj~ [L2 P5 ($.r) dv(r)j dcr

= 2IS"- 1 ,fJ (T,, 0 ) da

= IS- 1 fn (T, + $+ ) da (since T is even)

=IS"-•Kn (T,° + 0-o) da

= IST'-1 J_ (T$ 1(T) d) d-v(r).

Now, it is clear that the function -P defined by

belongs to C'((-R, R)) and is even. Using the previous computation, we
have thus

{p., 37.) = (T,,4) = (QAIIL(I)

= (Q,4)0) = (QC'

since the Fourier transform commutes with orthogonal transformations and
Q is radial. This shows that 37-' n Q on B,(R). I

Remark 4.6. If d-v = v(r) dr where v is a positive function, then d ýL = w(&) d&

where w(&) = 2 IS, I-iv(ILI sign, ,(LQ)} &1-,)n- 11.

It should be pointed out that the measure p. constructed above is not
radial in general, unless -v is even. In that case, pl can be defined by the
formula

V ( E -0('A), [ISnl-' L 4)roa) d(r] d-, (r). (4.5)
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Conversely, if lL is radial, it can be written in the form (4.5) where'v is defined
by the formula

SP 0(p4)) + W(-H) d)l 2

Therefore, by Theorem 4.5, there is a one-to-one correspondence between
radial positive-definite extensions of Q and even positive extensions of T
One obtains in this way, using Theorem 3.2, the following characterization
for the "nonuniqueness" of the radial positive-definite extensions of Q.

Corollary to 4.6. Let R > 0 and let Q >> 0 on B,,(R) be radial. Then, there
exists a nonunique radial distribution QI >» 0 on 9R1 with QI = Q on B ,(R)
if and only if the associated one-dimensional distribution T defined by (4.2)
satisfies (3.2).

5. Maximum entropy

It is now clear that, when the n-dimensional radial extension problem has

a nonunique solution, we can use the maximum entropy method (i.e., The-
orem 3.4) to provide us with explicit solutions by using Theorem 4.5. More
explicitely, if v? is the weight defined in (3.4), we know that T- 1 vN = T on
(-R, R) and therefore the weight wl defined by

V LE 2", w =Slv(i-} = 2lSfl-vA(lIsign, (L)) I-(n"11

satisfies "•'. = Q on B, (R) for all choices of f satisfying (4.3). Of course, one
can wonder, in view of Theorem 3.4, if the weights wC are the entropy max-
imizers associated with certain n-dimensional logarithmic integrals. This
turns out to be the case, but in order to obtain a result valid in full generality,
one has to restrict the complex parameter A to vary on the positive imagi-
nary axis. Furthermore, in that case the associated weight wv% turns out to be
radial (and thus independent of 0) and the logarithmic integral considered
has a much nicer form. We need the following lemma.

Lemma 5.1. Let R > 0 and let us assume that the distribution T '> 0 on
(-R, R) associated with Q satisfies (3.2). Let t > 0 and consider uit, the
unique element of H satisfying (3.3) with A = it. Then, we have

Vy E J1, itit(-y)l = Ift(-y)l (5.1)

and, in particular, the weight Wt defined by

Vsatife n Wt(W ) = 2 ISon B-'Vit(l)Ol--

satisfies T-' (Wt) =Q on B n(R).
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Proof. Since T > 0 on (-R, R) and T is even, T must be real. In particular,
this implies that if u E H, then Ut E H and I(UlJ = 1(u)l. Now by definition of
uit, we have that, for all W E C' ((0, R)),

[1u;t, (P] (T, (Uit)v * } = j -2 e-2 7x c(x) dx

J e- 27Tx~p(x) dx = (J, (ujit)v • )

(T, (Uit-)v * -) = [ri-uq-,, WI.

Hence, Uit uit by uniqueness, and thus, "Yit(-y) = fjt(y), which
proves (5.1). This clearly implies that vit defined by (3.4) is even and thus
_T71-'(Wt) - Qon B1,(R) by Theorem 4.5. U

We can now state a maximum entropy theorem for extensions of radial
positive-definite distributions.

Theorem 5.2. Consider a radial distribution Q >> 0on B,(R), 0 < R < oo
and suppose that the associated distribution T satisfies (3.2). Let P be a
positive tempered measure on !t'• with k± = w + ±,., where vv E 1_,(1 Or)

and ýt, is singular. Then, if ,Tn-(•.) Q on B,(R) and t > 0, we have the
entropy inequality

log w(L) dL logWt(Logd (5.2&
(t2 + LI2 ) Li"_' Jn,, (t

2 +i d&2) ) L(_1

with equality if and only if ý - Wt.

Proof. We note first that

t,7lSl(t2 + 1LI2 ) 4"-_2 dL= 1.

Therefore we obtain, using Jensen's inequality and Lemma 5.1, that

[xp 2t log(iv([)/W,(2tL)j _ dexp J7TjS,,t dL

<= J UI,, (l[ (t2 i 2(L) dL [ -2

7( , (t2 + j&12) V,,(1&1)d

: , (ILa 12t (102 dL t1-2

(T, (uit)v , i,-jt) I)uu, 11-2

= Ilu I II2 u, 11-2 =
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and (5.2) follows. Since equality in Jensen's inequality only occurs for con-
stant functions, an equality in (5.2) implies that ýt, = 0 and w = W,. I

Remark 5.3. The measure ýt in Theorem 5.2 need not be radial. Let us also
mention that some of the computations involving uit in the proof above are
a bit formal, but they can be easily justified by considering a sequence in
Cý ((0, R)) converging to uit in H.
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1. Introduction

In Sections 4 through 11 of this paper we study the phase behaviour, on the
unit circle, for the so called "ultraflat unimodular polynomials" the existence
of which is known since Kahane's celebrated 1980 paper [7]. Before doing so
we recall, in Sections 2 and 3, some definitions and historical background.

Throughout this paper, the implied constants in the 0 notation of Lan-
dau are understood as absolute. A notation such as 06 means that the
implied constant depends only on the parameter 6.

2. Some historical background

As in Littlewood [9], let S, denote the class of those polynomials P(z)

Fn akzk which are unimodular, i.e., all of whose coefficients are complex
numbers of modulus 1:

IGO = I for all k = O,.1..

By Parseval's formula J', fp(e2in@)1 2 d8 = n + 1, we then have (for rt > 1)

min P(z)I < vm+ I < max IP(z)4. (2.1)
IZ I lZI I

An old problem (or rather an old theme) is this:

Problem (Littlewood's flatness problem). How close can such a unimod-
ular polynomial come to satisfying

iP(z)l - V/•-+ 1 on the whole unit circle Iz1 = 1? (2.2)

We insist on the (obvious) fact that (2.2) is impossible if rt > 1. So
one must look for less thaih (2.2), but then there are various ways of seeking

555
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such an "approximate situation." One way is this: in 1966 Littlewood [91
conjectured the existence of unimodular polynomials of arbitrarily large
degrees which are flat on the unit circle, that is, such that

B On+-+ 1 < IP(z) I < A On+1 (whenever Jz( = 1) (2.3)

where A and B are positive absolute constants (satisfying, of course, 0 < B <
1 < A). We do not know who coined the term "flat," nowadays commonly
used to describe those P E ql, which satisfy (2.3): it was not mentioned
by Littlewood [9], but became customary after K6rner [8] proved, in 1980,
Littlewood's conjecture on the existence of such polynomials.

Let us emphasize that the important aspect of the above conjecture
of Littlewood (now Korner's theorem) is really the lowLer bound B1rvn -+I 1
in (2.3). Indeed, if we just require polynomials P E q,l with the upper
bound condition

max IP(z)( A Aýn¶+1 (A = some absolute constant), (2.4)
IzI 1

then as early as 1914 Bernstein [31 proved in essence, as a lemma for the
study of absolute convergence of Fourier series, that the polynomial

G(z) = L eik2 Z *zk (a = real constant • 0) (2.5)
k 0

indeed satisfies the upper-bound inequality (2.3), with A = A(a) depending
only on a. See Bari's book [1] for a simplified version of Bernstein's proof.
In particuliar the constant A becomes absolute in the case of

G i W = c i )II1 ZK (2.6)
k 0

and
ti

G 2(z) W en ' • 1 !n f .. ,k G1 zein I'II I l). (2.7)
k 0

The polynomials G(z), GC (z), and G2 (z) are often called Gauss polynomials
because of their obvious connection with Gauss sums. Since Bernstein's
early work, various examples of P Z 9S, satisfying (2.4) have been found
and much research has been done on them. (For an account of some of
the work done till the mid 1960's. see Littlewood's book [10, pp. 25-32].
A fairly complete account of this topic alone would require a respectable
expository paper. Yet, in this paper, I will resist the temptation to digress
into any example other than the already mentioned Gauss polynomials and
the example given by relation (2.10) below.

I
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What led to Korner's existence proof for (2.3) has a rather interesting
history. It was known to Littlewood [9] that the (special) Gauss polynomials
G1 (z) and G2 (z) defined by (2.6) and (2.7) have the following surprising
properties: for any 6 with 0 < 6 < 1/2, we have

IGI(e' t )l = \n 1 + 06(nT6 ) outside 0 •< Itl <, n- (2.8)

and (equivalently) a similar estimate for IG2 (eit )(, but we also have
min IG, (eit)F = min IG 2 (eit )I = 0( rt 6 ). (2.9)

t t

Thus, because of (2.8), the Gauss polynomials G1 and G2 almost satisfy
Littlewood's condition (2.3) with nearly optimal constants but, because of
(2.9), they just fail to satisfy the lower bound condition in (2.3). In his 1977
paper [4], Byrnes proved that the unimodular polynomial (of degree Tt

2 
- 1)

n-I n-I-

Bz := Y- WkruZ k4 vi e 0 27T/ n (2.10)
k Or C

has properties remarkably similar to those of G 1 (z) and G2 (z). In particular
he proved, for B(z), estimates somewhat sharper than (2.8) and (2.9), with
much simpler proofs, and also extended his estimates to arbitrary degrees. In
addition Byrnes used the same method to prove that by suitably "perturbing"
0(n3,4) terms of P(eit) for some P E q,,, one obtains a function f(t) such
that, for every real t,

If(t) = v-+I + 0 (n.1 I4 (uniformly in t and n). (2.11)

Then K6rner [8] proved, via a modification of Byrnes's last construction
together with the use of a probabilistic idea, the existence of some P ,
satisfying (2.3).

3. Ultraflat polynomials

In the same 1966 paper [9], Littlewood had also suggested that, conceivably,
there might even exist a sequence (P,..) of polynomials in S, (possibly even
with coefficients all equal to +1) such that )Tn + 1)-1 !2 1P(eit)l converges to
I uniformly in t. We shall call such sequences of unimodular polynomials
"ultraflat." More precisely, we shall give the following definition:

Definition. Given a sequence (c,,) of positive numbers tending to zero, we
shall say that a sequence ( P,,n) of unimodular polynomials is (c, )-ultraflat if
deg Pin - o as Tn -- o and if, for IzI = 1,

EI -vn-+- P .. P(z)w hr ( + c,)egn + (3.1)(where n, = deg P,,,)
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or, equivalently,

max IP(z)Il- - c- n < v'-•+1 (n =deg Pm). (3.2)1Z1=1

In looser terms, we shall simply say that a unimodular polynomial P(z)

of large degree (i.e., going to infinity) is ultraflat if P =Pm for some mt, where
(Pm,) is an (c{ )-ultraflat sequence for some suitable (cn) tending to zero.

Despite K6rner's above-mentioned result on the existence of "flat"
unimodular polynomials, the existence of ultraflat unimodular polynomials
seemed very unlikely, in view of a 1957 conjecture of P. Erd6s (problem 22 in
[5]) asserting that, for all P E S, with nt > 1,

maxlP(z)I >,(1 + C) Vn+1 (3.3)IzL~l

where C is some positive absolute constant. Yet, shortly after Korner's proof,
Kahane [7] further refined Korner's method and proved that there exists a
sequence (P,),i>1, with P, E S,, which is (en)-ultraflat, where

Cn = 0 ( t-I/17 V/1-0g). (3.4)

Thus theErd6s conjecture (3.3) was disproved (in the case of the class q,).
For the more restricted class , of those P(z), all of whose coefficients are ± 1;
the analogous Erd6s conjecture remains unsettled to this date (end of 1991).
We conjecture that, for the ± 1 polynomials, it is true, and consequently we
conjecture that there are no ultraflat polynomials with only ± I coefficients.

Some additional remarks on Kahane's breakthrough are made in Sec-
tion 12. For the moment let "is insist that the ultraflat polynomials P E 9,
whose phase behaviour we shall be studying below are not necessarily
those of Kahane's paper [7]: we shall consider arbitrary ultraflat polyno-
mials P E S, only assumed to satisfy (3.1) or (3.2) for some sequence (en)
tending to zero.

4. The phase problem: the main conjectures

We shall henceforth suppose that P E S,,, (nt -4 oo), is (en)-ultraflat, that is,
satisfies (3 1). Write

P(eit) = R(t)eicx(t) with R(t) = (P(ett)I. (4.1)

We think of t as time. The ultraflatness condition (3.1) means that the
mobile point P(eit) moves inside a narrow annulus centered at the origin
and of inner (resp. outer) radius (1 - en ) vi-t + 1 (resp. (1 + E.) vi + 1). Our
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purpose is the phase problem, i.e., the study of the phase a(t), or rather the
(instantaneous) angular speed o'(t). Writing

n

P(eit) T exp(ikt + i.Ok) (Ok E 91 for all k),
k=O

we see that we have n + 1 unit vectors whose endpoints exp(ikt + iOk) rotate
along the unit circle with (respective) constant angular speeds 0, 1,2,..., rt.
That P(z) is ultraflat is equivalent to saying that there is a choice of the initial
positions exp(tOk), (k = 0, 1,2,..., r) so that the resultant vector has end-
point P(eit) moving in the above-mentioned narrow annulus. Our intuition
tells us (or at least mine did, when I considered the problem) two things.
First that, since the "components" exp(ikt + Wek) have (respective) angu-
lar speeds 0, 1, 2,..., n, then the "resultant angular speed" is approximately
their average; in other words we, might expect to have

oc't) = n/2 + o(rn). (4.2)

We shall see that (4.2) is trivially true in average, that is,

27• j ' OL(t~dt = n./2 + O(n c,) 14.3)

but that (4.2) itself is far from being true. Indeed we shall prove (Theorem 5.2)
that o'(t) takes values at least as large as 2n/3 + O(n ,, ) and as small as
rt/3+ O+ (ne,).

Secondly, our intuition tells us that, since all the components exp(ikt +
iOk) turn counter-clockwise, then so does their resultant P(eit), modulo
negligible fluctuations; in other words,

mrin (t) > o(n). (4.4)
Oý_t<27T

Now (4.4) is indeed true: we shall prove (Theorem 5.2) that

0(n. C ") <_ 0('[tM <_ n t- 0O(ri C,) (4.5)

Actually we conjecture that

min o'(t) = O(tc,), max o'(t) = n + O(rc,,), (4.6)
Olt •<2n O_,t!ý-271

and even something much more specific, namely that the normalized angular
speed o('(t)/n is, asymptotically, uniformly distributed in [0, 1). (The precise
definition is given below).

At this point let us formulate the main conjecture and, in Section 5, our
partial results that support it. (Recall that P E 9, is supposed (c, )-ultraflat,
i.e., that (3.1) holds).
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Conjecture (Uniform distribution conjecture for the angular speed). In
the interval 0 •< t < 27T, the distribution of the normalized angular speed
c'&(t)/n converges to the uniform distribution as nt -* oo. More precisely, for

any x E [0, 11 we have

meas{t E [0,27] : 0 <, a'(t) <_ rtx} = 27Tx + O(cn). (4.7)

For the special ultraflat polynomials produced by Kahane [7], (4.7) is indeed
true. (See [111).

In the general case (4.7) can, by integration, be reformulated 'equiva-
lently) in terms of the moments of the angular speed x' (t):

Conjecture (Reformulation of the uniform distribution conjecture). For
any q > 0 we have

- I c'(t)I"dt - + O(nqe,). (4.8)
27[ " q+I

We also have the following closely related (and, in some sense, stronger)
conjecture. It says that the angular acceleration &I"(t) and the other higher
derivatives of o( t) are L 2 -negligible, i.e., have very small L2 norms on (O, 27t1:

Conjecture (Negligibility conjecture for higher derivatives). For every
integer r > 2, the derivative ocr1 of order r satisfies

-f I la Ix '•(tli'dt = Or(2€ ) (11.9)
27T

One can prove that (4.9) implies (4.8), but with error 0, 1 (nr", ). The above
conjectures (4.7), (4.8) and (4.9) suggest that, very roughly speaking, the unit
circle can be divided into a small number of arcs ("small" meaning bounded
or Os (nt) for all 6 > 0) such that, on each such arc S, the circular motion of
e" ( " is either (approximately) uniformly accelerated or uniformly retarded;
in other words, the angular speed might have the form

o&'(t) ant + b f- vit) (for t t7 S) (4.10)

where a a c(S) and b = b(S) are "constants" depending only on S, and
"v(t) = v(S,t) is a "noise term" all of whose derivatives have negligible
L2 norms.

For the special ultraflat polynomials produced by Kahane [7], the phe-
nomenon (4.10) is indeed the case. (See [11]).

The results we state in the next section, and prove in Sections 6 through
11, partially confirm the above conjectures.
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5. The phase problem: statements of results

In this section, we state some results which will be proved in Sections 6
through 11. We keep all the notation of the previous sections. In particular
P E S, is (c (-ultraflat.

Theorem 5.1. Let C denote the (closed) trajectory of P(eit) as t runs over
[0, 27t1. Then the average value of the angular speed oc(t) on [0, 27T] (which
is also the winding number of C with respect to the origin) is given by

1I n 271 f 27T elt p,(eit)
a'(t)dt = -• p(- it) dt=- + O(nc,. (5.1)

27t 27t 271 P(cit 2

Theorem 5.2. We have
O(n e )<_ min o mm (t) <_ /3 + O(rnc,,) (5.2)

and

2r/3 + O(rne,,) <_ max o'(t) < n.+ O(rtn.). (5.3)0,_ t -z, 2 rr

Remark 5.3. If the "uniform distribution conjecture" (4.7) is true, then it
immediately follows that (5.2) and (5.3) can be improved to

min c&(t)=O(n c,)and max a'(t rt +O(nc,,). (5.41)

Theorem 5.4. Put i•o(p)11, 1 •,I%2'(tMq dt) if w e Lq(0,2rT andq 1.
Then

o2 / + O(nT2c,, n (5.5)

and

10(114 + 11",12 n 4 /5 + O(n 4 /5. (5.6)

We see that the relations (5.1), (5.2), (5.3) and (5.5) are all partial con-
firmations of the "uniform distribution conjectures" (4.7) and (4.8). Relation
(5.6) is also consistent with the conjectures (4.8) and (4.9). Indeed, (4.8) and
(4.9) would respectively imply

(IX'II1 = nrT-4 /5 + O(rt4cn ) (case q = 4 of Conjecture (4.8)) (5.7)



{ Saffari 562 }

and

110C",11 = O(n,4 C,) (case r = 2 of Conjecture (4.9)) (5.8)

and we see that theorem (5.6) is obtained by adding up the conjectural rela-
tions (5.7) and (5.8).

Now (5.5) and the trivial inequality Ilajc14/ > 11412 imply:

Ia11 > T4 /9 + O(+T4 E") (5.9)

and, equivalently, in view of (5.6)

112< 44 50Ir•la 2 < 5n + of•T14C ). (5.10)

Of course (5.9) and (5.10) are very poor compared to the optimal (conjectural)
relations (5.7) and (5.8). But one further "partial confirmation" of our above
conjectures is the following improvement of the trivial inequalities (5.9)
and (5.10):

Theorem 5.5. There is an (effectively computable) absolute constant -y > 0
such that the trivial inequalities (5.9) and (5.10) can be improved to the
respective (equivalent) relations

Ža 114 1 + Y + O(rn4 c,) (5.11 )

and

1111"l2 •< 4 __Y n + O(n4 Cn). (5.12)

In Section 11 we shall prove the existence of such a constant -y, but
will not compute a numerical value for it, because further refinements of our
present method (to be written out later) will provide better numerical values.

6. Some preliminary estimates

We first show that the sequence (c,,) in the flatness condition (3. 1) necessarily
satisfies

C, > n7-I + O(n- 2 ). (6.1)

(This can be improved, but all we need here is to know that c,, ) Kn-T for
some absolute constant K > 0). To prove (6.1), write

f(t) = jP(ei tl) 2  T • ckeik (C-k = Ck) (6.2)
k -- n
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and note that co = n, + 1 and c, = doa,, so IclJ = 1. Also write

g(t) = IP(ett)12 
- (nT + 1) = T CkeikL (6.3)

1 <Ikl<-n

and

h(t) = n- g (t + (6.4)

-cneint + c,•e-1 = 2 cos(nt + (p)

where c,, e1 '.Then by (6.3), (6.4) and (3.1),

2= IIh�lkh. <, IlolI < (, + 1)(2e, +± e, (6.5)

whence

SQn + 2 1) -1 = n_- + O(n-2) (6.6)

which proves (6.1).
In all the 0 estimates below, we are using the fact that, by (6.1), uni-

formly bounded functions are O(nc r,). First rewrite (3.1) in the cruder form

R(t) = v/ + O(vc-c,,) where R(t) IP(ei t )I. (6.7)

We shall also need estimates for R'(t) and R"(t). (In the rest of this paper we
suppose nt large enough so that P (z) has no root on the unit circle: P (eit) # 0,
so R(t) > 0 and f(t) > 0). Once again, by (3.1) or (6.7),

f(t) = W O(=n c,) and g(t) = O(n e n), (6.8)

so Bernstein's inequality applied to the trigonometric polynomial
g(t) implies

I1f,1.I O(i 2C,) and If"lII = lig'11oo = O(rtsC,1 ). (6.9)

Now R(t) = f_(t), hence

R'(t) f'(t) - O(ni2 eC) = O(n 3/2en) (6.10)
2 f(t) 2v/n + 0(,/-.- - Onn)

and similarly

R"(t) - 2f(t)f"(t) - (f'(t))2

4(f(t))3/2(6.11)

O (¢ e,, ) = O (O t 12 en).

4n3/ 2 + O(n/t 2 e,1 )
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7. Proof of Theorem 5.1

Differentiate (4.1):

ieitP1(eit) = R'(t)eia t) + ioc'(t)R(t)eia' t) (7.1)

whence

eit P I(C it) R'(t)a'{t) -- P +e" .-+-- (7.21P(eit) R(t)

Since a'(t) is real, on integrating (7.2) over [0, 2-al we have

1 2• 1 2r eitp'(eit271:,~27 o o p(eit) ) d 73

(winding number of C around the origin). Of course (7.3) is a well known el-
ementary result. We now prove (5.1 ). By (3. 1 ) and by Bernstein's inequality
applied to our (c,, )-ultraflat polynomial

11

P(z) = L akz K (7.4)
kC0

we have

eit P' (e ll )P - O(n.2  , (7.5)

hence by (6.1), (6.8), (7.3) and (7.4),

fl a '( t )d t = 1 ll e i (e it p( ei t d t
271 ~ 1 27 f) -n (T

S.... eit P'(eit )P(ePt)dt + O(rn ell

1 12 j 0o(n C
k I

1 nrt(l•) rt.
-, 2 + O(nc,,) = - + O(rn,)

nhc 2 2

which proves (5.11 and Theorem 5.1.
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8. Proof of part of Theorem 5.2

Here we only prove the inequalities

O(nre,) _< min o&(t) <_ max ox(t) < rn+ O(rnj,). (8.1)
Ot<-27r 0_<t<_27T

(The proof of the rest of Theorem 5.2 uses Theorem 5.4, and will be given in
Section 10. By (6.7), (7.2) and Bernstein's inequality applied to P, we have

e i t p '( e i t ) P '_e_ t_
S= \ " (8.2)
"1< n312 + O(rL3//

2
c +)

V' + o(V-n CT, )

which proves the rightmost inequality in (8.1). Now consider the "inverse"
P* of P, i.e., the polynomial

n

P*(z) Qln-kZ k z"P(1/Z). (8.3)

Obviously P* E S, and is also (C,)1 -ultraflat, since [P*(z)l = P(z)i on the unit
circle (zI = 1. By (8.3),

P*(eitI = Rt)e 'Ut-jat. (8.4)

So, by applying the conclusion of (8.2) to P*, with o(t) ot course replaced by
rtt - a(t), we have

n --- a'(t) <- n + O(n.€,)

which proves the leftmost inequality in (8.1).

9. Proof of Theorem 5.4

By (7.1) we have

lP'(ei" )2 = IR(t>0'(t)12  + IR'tt)12 . (9.1)

Now, by (7.4),

2 P'(ei ()2dt k2 jak12  n n(n + 1)(2n 4 1) 1/6
k I

while, by (6.7) and (6.10),

2-- T (IR(t)a'(t)12
4 IR'(t)12) dt n (1 + O(c, )) 110(1112 + 0(n C2)"
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Comparing the last two equalities yields (5.5). To prove (5.6), differentiate
again (7.1) and then take the squares of the moduli of both sides, to obtain

IP'(eit) + eitP" f(eit )12

= IR"(t) - (&C(t)) 2 R(t)12 + j2&c'{t)R'(t) + &"(t)R(t)12 .

Inegrate both sides of (9.2) over [0,27TI (with respect to dt/27t). By (7.4), the
integral of the left side is

22 eikt dt k 4 = T15/5 + O( r14 (9.3)
k - 0 k-l

while that of the right hand side is

(ll11al4 + 11 C ll) ' Tn(I + O(Cn)) + 0(rtL E,,) (9.4)

in view of (6.7), (6.10), (6.11), (8.1) and the estimate oc"(t) = O(n 2 ) which
can be obtained by differentiating (7.2) and by using Bernstein's inequal-
ity. Comparing (9.3) and (9.4) yields (5.6) and completes the proof of
Theorem 5.4.

10. End of proof of Theorem 5.2

We adopt an idea already used in [121. Write

i= min &'(t)andM= max o(t). (10.1)O<_t<_2n, O<_ t_<2l

To finish the proof of Theorem 5.2, it remains to show that

p < n/3 + O(n c,,) and M i> 2n/3 + 0(i c,). (10.2)

Put 0 (t) = x('(t) - A for 0 < t < 27T. Then, by (5.1), (5.5) and (8.1),

A *(t)2dt = 1II0,:12 + -2 A f24 o&(t)dt (10.3)

= nT2 /3 + ý12 - n[L + O(n 2E2).

Now, since 0 <_ 0 (t) <_ M - p., we have by (5.1):

A ~2• I(t)12dt •< (M - o(t)dt (10.4)

= (M - i.) (n/2 - t + 0(•c,,)).

Comparing (10.3) and (10.4), we have again by (8.1)

nT2 /3 - n4/2 < (n/2 - P)M + O(tn2
C") (10.5)

and since by (5.1) we have ýp< n/2 + O(nc,) < M, (10.5) implies (10.2)
and completes the proof of Theorem 5.2.
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11. Proof of Theorem 5.5

The proof is based on the following lemma.

Lemma. (Concentration on low degrees for real trigonometric pulynomials
with small L4 norms). For ever) 61 > 0 and 62 > 0, no matter how small,
there exists an effectively computable e = e(51,62) > 0 and an integer

o = mo(61,62) such that whenever a real trigonometric polynomial

in

F(t) = L(Akcos kt + Bksin kt)
k 0

satisfies n >_ mo and

JIFI14  <- (1 + c)JIF1 2, (11.1

then
iii(A' + B 2< 6, (-A' + B'). !,

k -61n k 0

Proof (of the lemma). It is more convenient to rewrite F(t) in the form

ITI

Fit)= L bkei& (bk N r. b -k = bk)

k -in

and put F, (ei t ) = " III bkpke ikt where p = eA, and A is a real parameter
at our disposal. Write also:

2,n

(F(t)) 2 Y= dheiht (d-h = di, for all h)
h -2mn

Then do = -rn _bkt
2 = )FJJ2 and

2,n 22 a

IF = 1 1dh2  12. + L Id 2 "

hl -2iim h. 1

Thus (11.1) can be rewritten as

27
2 T jdh 12 "• c Id' w ith c t (I + C)4 - .( 1 3

h I
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Now (F,(ei)f =h2,,, dh ,whence

Z 1-n,ý "c " ,w e ,

!IF,,_ = y- idi,,
2  p21

h -2,,

2 m

=d 2+2E d,, 2 (P-11 -+ ,O-2h}
hd 2dE p {~~11.4)

2 i

"d 2(p4 
4 ') Id,"

h, 1

GI de { - 2ccosh(4A))

assuming (11.1) and therefore 11.3). Also

2km

- . ,' ., b .p t

k "0,L

1,k 2 )2 • )-2k/ 2

( " k, 2) cosht)1\s, 1.

By I I] ..11,nd 115 ,.e.e that J 1.1 ! implies

cosh (2A• , ll :
,l',,' '

For any fixed t 0 and anm ti\ed 21,(0 P . '11, the right hand side
of i11.6i tends to infinity as \ , theretore, as, \ aries in N. the

right hand side of 11.6) has a minimun ). For fixed ',1, we h1,xve
lim, ,* M (L.t I I L. ('o, for an tfiixed . 0 and aiv c Ohul ii',ilthi -,1a1!
the right hand side of (11.61}is f2tor some choice ot\ A A(:,2 ,,., This
completes the proof of the lemma I

Proof (of Theorem 5.5). The idea is to use the tact that

0 1(t Of t a. nd 0,, (a h f",im Fit (VnZ.l,, 111,7,
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where here F(t) is the trigonometric polynomial n- 19(eit p,(e p (Peit)), and
to apply the lemma to this F, (of degree m = 2n). The two estimates (11.7)
follow from (7.2) and the error estimates of § 6 via Bernstein's inequality.
The proof of Theorem 5.5 is by contradiction.

Suppose Theorem 5.5 is not true. Then, for any fixed 61 > 0 and 62 > 0,
and any 6 with 0 < 6 < 0(61,6 2 ) [where c = 0(61,62) is that of the lemma
and any sufficiently large n, we have the (equivalent) inequalities

l,114 < 1 ") 4+ rC

4Iw 4 (,9 +O(rc,,) (11.8)

(I1 + 9b)L.oji4 + O(n 4C€,I

and

" ýo( 'i2 4- 6)• 4 _O ( ,.4 C ") 1 .

For sufficiently small 6 and sufficiently large m- 2rn, we have, by 11l.7),
(11.8) and the lemma,

2F:i k2 (A 2 + B~ 2 j
k 1 k k ke

k.. in , k - 15,

-r.. 2 621iFHII i mn~2 1Ffl' = 4n 2 (62 -- Z2 )112.

and therefore, by (11.7) again,
a"112 < +n2(2 )10,'12 + 0(n.4C )

.-4(5•* 2 )nt4.1 ~t€

which contradicts (11.91 for sufficiently small 6, o and b2 This proves
Theorem 5.5. I

12. MIscellaneous remarks

Remark 12.1. In the fall of 1974 J.-P. Kahane -"ve me a preprint of his
paper [71 (I already had a preprint of Korner 181). I immediately coined
the term "flat" for Korner-type polynomials and "ultraflat" for Kahane-type
ones. But afterwards I heard exactly these same terms from such unrelated
sources that obviously several people must have coined these same words
at the same time!
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Remark 12.2. The (a priori arbitrary) (c,)-ultraflat polynomials P E 9,
have hidden and interesting properties worth studying. (Those produced
by Kahane [7] are excellent models for testing ideas and conjectures). Let
P E 9, be (cn)-ultraflat, let P* E 9,, denote its "inverse" and *P e 9,, its
"reverse" f cf. (8.3)1:

P*(z) = Y a"-kz zt P(1/z)
k1 0

*P(Z) = Qn-kz z T .P(l/z).
k 0

Clearly both P* and *P are (c,, )-ultraflat, and we conjecture the following
"near orthogonality" properties of the pairs (P, P*) and (* P, P):

C aka1nk = O(W.) (as n1 -- ) (12.1)
k 0

L ak 1 k = o (n) (as n - oo). (12.2)

Conjectures 02.1 1 and (12.21 are much stronger than are the respective
statements:

1) "P is nowhere near being self-inversive" (Pself-inversive means P - P*,
that ik , a,,k ak= for all k).

2) "P is nowhere near being symmetric (or palindromic)" (P symmetric
(or palindromic) means P =* P, that is, a,-k = ok for all k).

The truth of Item I is a consequence of our paper [6]. In fact, a trivial corollary
to the results of [6] is that, if P E fq,l is ultraflat, then

5Qakflk n-, 0rt O(tl (n --• 00) (12.3)
k 0

and I can further decrease the constant 5/6 in (12.3) (though I am unable to
replace it by zero, otherwise I would have a proof of (12.1 )). But (2) is an
open problem, and so is its following consequence:

Conjecture (Weak form of Item 2 of Remark 12.2). An ultraflat P ',
cannot be symmetric (or palindromic), i.e., we cannot have P * P.

Remark 12.3. Here is another type of open problem:

Conjecture. Let F be any fixed subset of the unit circle which is not ev-
erywhere dense. Then there cannot exist ultraflat polynomials all of whose
coefficients are in [.
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It would be most desirable to have a proof of this conjecture for E finite,
or even when E is the group of d-th roots of 1 for some d >_ 2. (This is
not known for any d _> 2. The case d = 2 is that of the ±1 polynomials).
But J. Beck [2] has combined the existence of Kahane's ultraflat polynomials
with other ingenious ideas to give a proof of the following improvement of
Korner's theorem:

Theorem 12.4 (Beck). [2]. For fixed d > 300 and sufficiently large n., there
are polynomials (of degree nt) all of whose coefficients are d-th roots of I and
which satisfy Littlewood's condition (2.3).

Remark 12.5.

Conjecture (A very general one (containing the previous one)). Let
E c f, E ? {0f, be such that the closure E of E contains no circle of centre
origin and radius > 0. (For example, any finite set not reduced to the origin.)
Let P be any polynomial all of whose coefficients are in E and having at least
two nonzero coefficients. Put

/1 p
2

71 \ /

= (5- fP(eitflqdt if-ac < q < ooand q $0

lPlK = max fP(ei t )I, IlPH-._= min fP(e t )0Ot -< 27t O !t< 271

1P110= exp (-I logIlP(ei'!dt)

I conjecture that, whenever -oo < p < q < 00, we have

[P q ý 1 C(p,q) (12.4)llPill,,

where C(p, a) > 0 depends only on p and q.

Remark 12.6. There are several other related matters, in particular some
interesting problems of D.J. Newman about ultraflat polynomials. I shall

deal with them elsewhere.

13. Last minute addendum

A few days after submitting this paper, I made these three observations:

1) Theorem 5.5, as it is stated, is not interesting unless the actual value
of -y is computed. Indeed, H61der's inequality implies the statement
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of Theorem 5.5 with -y = 1/27. But in a forthcoming paper, we shall
see that the method of proof of Theorem 5.5 gives a constant y' larger

than 1/27.
2) One can obtain (10.2) in a straightforward manner, just by the "degen-

erate H6lder inequality" majorizing the 2-norm in terms of the 1-norm
and the sup-norm.

3) The "negligibility conjecture" for the acceleration alone (case r - 2)
implies the negligibility conjecture for all r > 2, because of Bernstein's
inequality, and the approximation relation (11.7) and its analogues for
higher derivatives. It would therefore suffice to settle the case r = 2.
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a Families and sequences of zero-crossing counts generated by parametric
time invariant linear filters are called higher order crossings or HOC-. Be-
cause of the close relationship between zero-crossing counts and first order
autocorrelations, families of first order autocorrelations are also referred
to as HOC. We investigate the HOC from some particular families of lin-
ear filters applied in the problem of multiple frequency detection in noise.
Viewing the cosine of each discrete frequency as a fixed point of a certain
mapping, it is shown how to construct HOC sequences that converge to
the fixed points. A faster convergence rate is achieved by controlling the
bandwidth of the parametric filters.

1. Introduction

1.1. The general idea of HOC

In general, when a filter is applied to a time series, it changes the series mode
of oscillation. Thus, when a bank of filters is applied to the same series, we
obtain a sequence or family of oscillation patterns. The resulting family of
zero-crossing counts is referred to as higher order crossings or simply HOC.
The corresponding first order autocorrelations are referred to as higher order
correlations, or simply HOC again. Because the first order autocorrelation
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and the expected zero-crossing rate of a real valued stationary time series
are essentially equivalent, using the same acronym is quite tolerable. The
particular HOC under consideration should be clear from the context.

This paper shows how to construct convergent HOC sequences for the
purpose of multiple frequency estimation in the presence of ambient noise.

The gist of the idea is to employ HOC sequences in the fine tuning
of parametric filters. This is done iteratively as follows. A time beries is
filtered by a parametric filter, and the resulting first order autocorrelation is
immediately used in adjusting the filter parameter. The adjusted filter is then
applied again, giving rise to a new first order autocorrelation, and the pro-
cedure is repeated. By choosing the filters appropriately, the scheme gives
convergent sequences of higher order correlations, or equivalently, conver-
gent sequences of higher order crossings, depending on what one chooses to
observe, correlations or zero-crossing counts. From a statistical point of view,
under appropriate conditions, the method guarantees the strong consistency
(almost sure convergence) of the estimating HOC sequences.

To express the same idea in symbols, let {Zt,, t = 0, ± 1, ± 2,., be a
zero-mean stationary time series, and let {,0}, E E ), be a parametric family
of time invariant linear filters. Denote by {Z, (f0) the filtered series,

Ztl6) = Lo(Z)t

Then ,pi (0)}, 0 E 0, defined by

91{E[Zt (O)Zt ,0)11,
P1 (EIZt (0)12

is a HOC family defined from a parametrized first order autocorrelation.
Here and elsewhere, a bar denotes complex conjugate. For a real valued
process ýZt (0),, let AlI be the indicator of the event A, and define,

N
D O = - l IZ , ( O 'Z , I f •o l 0

t 2

as the number of zero-crossings observed in Z1 (0), Z2 (0). ,ZN (0). This is
the corresponding HOC family from zero-crossings. When {Zt , is a strictly
stationary pure sinusoid, or when {Zt} is Gaussian, then

p I (e ) = c o s - -E j ,/ (1 .1 )

k N- I)

and we can see that in this real case knowing P, (0) is equivalent to knowing
E(De). The right hand side being an expected rate, is independent of N. More
examples that relate PI to E(D) by a simple formula are given in [1]. For
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example, let {Zt be a real valued zero mean stationary Gaussian process,
and define

Yt = Z3

Then {Yt} is still stationary with mean zero, but it is no longer Gaussian.
Let p, (ij) be the first order autocorrelation of {Yt}, and let D(y) be the zero-
crossing count in Y 1, Y2 ,... , Y N. Then,

9Cos (7iE(D())) +1 cos (37TE(D(j)))

Thus, from E(D(y)) we can get P, (y). Going in the reverse direction requires
the solution of a third degree equation.

Inspired by the algorithm presented in [2], we shall be concerned with
fixed points of p, (0) obtained from the recursion,

ojfi = P;(0i) (1.2)

for some specific families of parametric filters. As it turns out, by controlling
the filter bandwidth, the fixed points can be made to coincide with the cosines of the
frequencies i1 the discrete spectrum of {Zt 1.

1.2. The problem

Consider the mixed spectrum model for t E {0, ± 1, ±2,.•-,

P
Z =L A cs(wuit + (ci) + I t = Xt + Ct (1.3)

where p is not necessarily known, A1 , ,Ar, are unknown constants,
W1, ... , w, are unknown frequencies with values in (-7,n1, ),Ct} is white
noise with mean 0 and variance a2,, and 4~,... ,4b,, are independent ran-
dom variables uniformly distributed in (-7, 7T), and are independent of {,t }.
The assumption of white noise is not really needed, but it simplifies the
exposition. In fact, any continuous spectrum noise will do just as well.

The problem is to estimate wi I., w, from recursive HOC sequences
of the form (1.2).

For this goal, we investigate the HOC sequences pi (0j) from two para-
metric families of filters, loosely referred to as the "alpha filter" and the
"complex filter." We also discuss briefly a third parametric filter to which
we refer as the "exponential filter."


